Optimizing Inventory with Frequent Pattern Growth Algorithm for Small and Medium Enterprises

  • Imam Riadi Universitas Ahmad Dahlan, Yogyakarta, Indonesia
  • Herman Herman Universitas Ahmad Dahlan, Yogyakarta, Indonesia
  • Fitriah Fitriah Master Program of Informatics, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
  • Suprihatin Suprihatin Universitas Ahmad Dahlan, Yogyakarta, Indonesia
Keywords: Data mining, Frequent Patten Growth, Inventory Management, Small medium enterprisest


The success of a business heavily relies on its ability to compete and adapt to the ever-changing market dynamics, especially in the fiercely competitive retail sector. Amidst intensifying competition, retail business owners must strategically manage product placement and inventory to enhance customer service and meet consumer demand, considering the challenges of finding items. Poor inventory management often results in stock shortages or excess. To address this, adopting suitable inventory management techniques is crucial, including techniques from data mining, such as association rule mining. This research employed the FP-Growth algorithm to identify patterns in product placement and purchases, utilizing a dataset from clothing store sales. Analyzing 140 transactions revealed 24 association rules, comprising rules with 2-itemsets and frequently appearing 3-itemset rules. The highest support value in the final association rules with 2-itemsets was 10% with a confidence level of 56%, and the highest support value in the 3-itemsets was 67% with the same confidence level. Additionally, three rules had a confidence level of 100%. Thus, the association rules generated by the FP-Growth frequent itemset algorithm can serve as valuable decision support for sales of goods in small and medium-sized retail businesses.


Download data is not yet available.


[1] A. Ikhwan, M. Yetri, Y. Syahra, J. Halim, A. P. U. Siahaan, S. Aryza, and Y. M. Yacob, “A Novelty of Data Mining for Promoting
Education Based on FP-Growth Algorithm,” International Journal of Civil Engineering and Technology (IJCIET, vol. 9,
no. 7, pp. 1660–1669, 2018. [Online]. Available: http://www.iaeme.com/IJCIET/index.asp1660http://www.iaeme.com/ijciet/
[2] S. Sunardi, A. Fadlil, and N. M. P. Kusuma, “Comparing Data Mining Classification for Online Fraud Victim Profile in
Indonesia,” INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi, vol. 7, no. 1, pp. 1–17, feb 2023.
[Online]. Available: https://ojs.unpkediri.ac.id/index.php/intensif/article/view/18283
[3] A. Ria Riszky, M. Sadikin, C. Sitasi, A. R. Riszky, M. Sadikin, D. Mining Menggunakan Algoritma Apriori untuk
Rekomendasi Produk bagi Pelanggan, and J. Teknologi dan, “Data Mining Menggunakan Algoritma Apriori untuk
Rekomendasi Produk bagi Pelanggan,” Jurnal Teknologi dan Sistem Komputer, vol. 7, no. 3, pp. 103–108, jul 2019. [Online].
Available: https://jtsiskom.undip.ac.id/article/view/13234
[4] D. S. Widodo and D. M. Utama, “Analisis Model Sustainable Economic Order Quantity Dengan Mempertimbangkan Emisi
Karbon Dan Batasan Kapasitas Gudang Untuk Menekan Total Biaya Persediaan,” TEKNIK, vol. 40, no. 3, pp. 169–175, dec
2019. [Online]. Available: https://ejournal.undip.ac.id/index.php/teknik/article/view/24508
[5] J. Liu, H. Zhou, Q. Wang, Z. Li, L. Su, Y. Li, H. Pan, W. Wang, K. Wan, J. Zhao, and S. Liu, “Analysis of Elderly Inventory
of Electricity Meters Based on Association Mining,” Proceedings - 2020 International Conference on Intelligent Computing,
Automation and Systems, ICICAS 2020, pp. 37–42, dec 2020.
[6] M. Sornalakshmi, S. Balamurali, M. Venkatesulu, M. N. Krishnan, L. K. Ramasamy, S. Kadry, and S. Lim, “An efficient
apriori algorithm for frequent pattern mining using mapreduce in healthcare data,” Bulletin of Electrical Engineering and
Informatics, vol. 10, no. 1, pp. 390–403, feb 2021. [Online]. Available: https://beei.org/index.php/EEI/article/view/2096
[7] K. D. Hartomo, S. Yulianto, and R. A. Suharjo, “Prediksi Stok dan Pengaturan Tata Letak Barang Menggunakan Kombinasi
Algoritma Triple Exponential Smoothing dan FP-Growth,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 7, no. 5,
pp. 869–878, 2020.
[8] A. Salam, J. Zeniarja,W.Wicaksono, and L. Kharisma, “Pencarian Pola Asosiasi untuk Penataan Barang dengan Menggunakan
Perbandingan Algoritma Apriori dan Fp-Growth (Study Kasus Distro Epo Store Pemalang),” Jurnal DINAMIK, vol. 23, no. 2,
[9] G. Agapito, M. Milano, P. H. Guzzi, and M. Cannataro, “Mining Association Rules from Disease Ontology,” Proceedings -
2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019, pp. 2239–2243, nov 2019.
[10] K. Wongwan and W. Laosiritaworn, “Application of association rules in woven wire mesh defects analysis,” 2018 7th International
Conference on Industrial Technology and Management, ICITM 2018, vol. 2018-January, pp. 325–329, apr 2018.
[11] A. Anggrawan, M. Mayadi, and C. Satria, “Menentukan Akurasi Tata Letak Barang dengan Menggunakan Algoritma Apriori
dan Algoritma FP-Growth,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 1, pp.
125–138, nov 2021. [Online]. Available: https://journal.universitasbumigora.ac.id/index.php/matrik/article/view/1260
[12] G. T. M. Napitupulu, A. Oktaviani, D. Sarkawi, and I. Yulianti, “Penerapan Data Mining Terhadap Penjualan Pipa Pada Cv.
Gaskindo Sentosa Menggunakan Metode Algoritma Apriori,” Jurnal Riset Informatika, vol. 1, no. 4, pp. 167–172, 2019.
[Online]. Available: https://repository.bsi.ac.id/index.php/repo/viewitem/22649
[13] Fitriah, I. Riadi, and Herman, “Analisis Data Mining Sistem Inventory Menggunakan Algoritma Apriori,” Decode:
Jurnal Pendidikan Teknologi Informasi, vol. 3, no. 1, pp. 118–129, mar 2023. [Online]. Available: http:
[14] S. Anas, N. Rumui, A. Roy, and P. H. Saputro, “Comparison of Apriori Algorithm and FP-Growth in Managing Store
Transaction Data,” International Journal of Computer and Information System (IJCIS), vol. 3, no. 4, pp. 158–162, oct 2022.
[Online]. Available: http://www.ijcis.net/index.php/ijcis/article/view/96
[15] H. Kasim and I. Riadi, “Detection of Cyberbullying on Social Media Using Data Mining Techniques,” International Journal of
Computer Science and Information Security,, vol. 15, pp. 244–250, nov 2017.
[16] S. Vijayarani and S. Sharmila, “Comparative analysis of association rule mining algorithms,” Proceedings of the International
Conference on Inventive Computation Technologies, ICICT 2016, vol. 2016, 2016.
[17] A. I. Idris, E. A. M. Sampetoding, V. Yoga, P. Ardhana, I. Maritsa, A. Sakri, H. Ruslan, and E. S. Manapa,
“Comparison of Apriori, Apriori-TID and FP-Growth Algorithms in Market Basket Analysis at Grocery Stores,” The IJICS
(International Journal of Informatics and Computer Science), vol. 6, no. 2, pp. 107–112, jul 2022. [Online]. Available:
[18] Y. A. U¨ nvan, “Market basket analysis with association rules,” Communications in Statistics - Theory and Methods, vol. 50,
no. 7, pp. 1615–1628, 2021. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/03610926.2020.1716255
[19] G. Zhang, C. Liu, and T. Men, “Research on data mining technology based on association rules algorithm,” Proceedings of
2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, ITAIC 2019, pp. 526–530,
may 2019.
[20] S. Dong, M. Liu, and S. Zhang, “Association rules mining of silk relics database with the RCFP-growth algorithm,” Chinese
Control Conference, CCC, vol. 2019-July, pp. 7804–7809, jul 2019.
[21] S. Bagui, K. Devulapalli, and J. Coffey, “A heuristic approach for load balancing the FP-growth algorithm on MapReduce,”
Array, vol. 7, p. 100035, sep 2020.
[22] T. Yudha Prawira, S. Sunardi, and A. Fadlil, “Market Basket Analysis To Identify Stock Handling Patterns & Item Arrangement
Patterns Using Apriori Algorithms,” Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika, vol. 6, no. 1, pp. 33–41,
apr 2020. [Online]. Available: https://journals.ums.ac.id/index.php/khif/article/view/8628
[23] C. A. Sugianto and M. N. Astita, “Implementasi Data Mining Dalam Data Bencana Tanah Longsor Di Jawa Barat
Menggunakan Algoritma Fp-Growth,” Techno.Com, vol. 17, no. 1, pp. 91 – 102, nov 2017. [Online]. Available:
[24] W. N. Setyo and S. Wardhana, “Implementasi Data Mining Pada Penjualan Produk Di Cv Cahaya Setya Menggunakan Algoritma
Fp-Growth,” PETIR, vol. 12, no. 1, pp. 54–63, apr 2019.
[25] A. Maulidah and F. A. Bachtiar, “Penerapan Metode Association Rule Mining untuk Asosiasi Ulasan Terhadap Aspek Tempat
Wisata Jawa Timur Park 3,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 5, pp. 1029–1038, oct 2021. [Online].
Available: https://jtiik.ub.ac.id/index.php/jtiik/article/view/4417
[26] N. Nurani and H. Gani, “Menggunakan Algoritma Apriori dan Algoritma Centroid Linkage Hierarchical Method (CLHM),”
ILKOM Jurnal Ilmiah, vol. 9, no. 1, pp. 62–69, 2017.
[27] A. Erfina, M. Melawati, and N. D. Arianti, “Penerapan Metode Data Mining Terhadap Data Transaksi Penjualan Menggunakan
Algoritma Apriori (Studi Kasus : Toko Fasentro Fancy),” SANTIKA is a scientific journal of science and technology, vol. 10,
no. 1, pp. 11–17, jul 2020. [Online]. Available: https://jurnal.ummi.ac.id/index.php/santika/article/view/1359
[28] R. Rusnandi, S. Suparni, and A. B. Pohan, “Penerapan Data Mining Untuk Analisis Market Basket Dengan Algoritma
Fp-Growth Pada Pd Pasar Tohaga,” Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, vol. 9, no. 1, pp. 119–133,
apr 2020. [Online]. Available: https://ejournal.undiksha.ac.id/index.php/janapati/article/view/19349
[29] E. Erwin, “Analisis Market Basket Dengan Algoritma Apriori dan FP-Growth,” Generic, vol. 4, no. 2, pp. 26–30, jul 2009.
[Online]. Available: http://generic.ilkom.unsri.ac.id/index.php/generic/article/view/15
[30] L. Ardiantoro and N. Sunarmi, “Badminton player scouting analysis using Frequent Pattern growth (FP-growth) algorithm,” in
Journal of Physics: Conference Series, vol. 1456, no. 1. Institute of Physics Publishing, feb 2020.
[31] S. Hu, Q. Liang, H. Qian, J. Weng, W. Zhou, and P. Lin, “Frequent-pattern growth algorithm based association rule mining
method of public transport travel stability,” International Journal of Sustainable Transportation, vol. 15, no. 11, pp. 879–892,
2021. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/15568318.2020.1827318
[32] E. C¸ akr, R. Fkn, and C. Sevgili, “Investigation of tugboat accidents severity: An application of association rule mining algorithms,”
Reliability Engineering & System Safety, vol. 209, p. 107470, may 2021.
[33] L. Zahrotun, D. Soyusiawaty, and R. S. Pattihua, “The implementation of data mining for association patterns determination
using temporal association methods in medicine data,” 2018 International Seminar on Research of Information Technology and
Intelligent Systems, ISRITI 2018, pp. 668–673, nov 2018.
[34] Islamiyah, P. L. Ginting, N. Dengen, and M. Taruk, “Comparison of Priori and FP-Growth Algorithms in Determining Association
Rules,” ICEEIE 2019 - International Conference on Electrical, Electronics and Information Engineering: Emerging
Innovative Technology for Sustainable Future, pp. 320–323, oct 2019.
[35] M. T. Osman, C. Yuli, T. Li, and S. F. Senin, “Association rule mining for identification of port state control patterns
in Malaysian ports,” Maritime Policy & Management, vol. 48, no. 8, pp. 1082–1095, nov 2021. [Online]. Available:
[36] S. F. Rodiyansyah and A. Mardiana, “Ekstraksi Pola Kesalahan Jawaban Siswa Menggunakan Algoritma Apriori,” JURNAL
INFOTEL, vol. 9, no. 3, pp. 278–284, aug 2017. [Online]. Available: https://ejournal.ittelkom-pwt.ac.id/index.php/infotel/
[37] A. Abdullah, “Rekomendasi Paket Produk Guna Meningkatkan Penjualan Dengan Metode FP-Growth,” Khazanah
Informatika : Jurnal Ilmu Komputer dan Informatika, vol. 4, no. 1, pp. 21–26, jun 2018. [Online]. Available:
[38] A. Setiawan and I. G. Anugrah, “Penentuan Pola Pembelian Konsumen pada Indomaret GKB Gresik dengan Metode
FP-Growth,” Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI), vol. 2, no. 2, pp. 115–125, oct 2019. [Online].
Available: https://www.ojs.serambimekkah.ac.id/index.php/jnkti/article/view/1564
[39] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,” ACM SIGMOD Record, vol. 29, no. 2, pp.
1–12, may 2000. [Online]. Available: https://dl.acm.org/doi/10.1145/335191.335372
[40] R. Qi and X. Guo, “Analysis of Intelligent Energy Saving Strategy of 4G/5G Network Based on FP-Tree,” Procedia Computer
Science, vol. 198, pp. 486–492, jan 2022.
[41] D. Dong, Z. Ye, Y. Cao, S. Xie, F. Wang, and W. Ming, “An improved association rule mining algorithm based on ant lion optimizer
algorithm and fp-growth,” Proceedings of the 2019 10th IEEE International Conference on Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Applications, IDAACS 2019, vol. 1, pp. 458–463, sep 2019.
[42] K. M. R. A. Utama, R. Umar, and A. Yudhana, “Penerapan Algoritma Fp-Growth Untuk Penentuan Pola Pembelian
Transaksi Penjualan Pada Toko Kgs Rizky Motor,” Dinamik, vol. 25, no. 1, pp. 20–28, jun 2020. [Online]. Available:
How to Cite
Riadi, I., Herman, H., Fitriah, F., & Suprihatin, S. (2023). Optimizing Inventory with Frequent Pattern Growth Algorithm for Small and Medium Enterprises. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 23(1), 169-182. https://doi.org/https://doi.org/10.30812/matrik.v23i1.3363