Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application
DOI:
https://doi.org/10.30812/matrik.v22i3.2860Keywords:
Machine Learning, PeduliLindungi Application, Sentiment Analysis, Text MiningAbstract
Since the emergence of the Covid-19 virus, the Indonesian government urged people to study, work, and worship or work from home. The social restriction policy has changed people's behavior which requires physical distance in social interaction. The government developed an application to minimize the spread of Covid-19, namely the PeduliLindungi application. The PeduliLindungi application is a tracking application to prevent the spread of Covid-19. The government's policy of implementing the PeduliLindungi application during Covid-19 aroused pros and cons from the public. The volume of PeduliLindungi application review data on Google Play was increasing, so manual analysis could not be done. New analytical approaches needed to be carried out, such as sentiment analysis. This research aimed to analyze user reviews of the PeduilLindungi application using classification methods, namely Support Vector Machine (SVM), Random Forest, and Naïve Bayes. The methods used were Synthetic Minority Oversampling Technique (SMOTE), Random Forest, SVM, and Naïve Bayes. SMOTE was used to balance user review data on the PeduliLindungi application. After the data had been balanced, classification was carried out. The results of this study showed that the Random Forest method with SMOTE got better accuracy than the SVM and Naive Bayes methods, which was 96.3% based on the division of training and testing data using 10-fold cross-validation. Thus, using the SMOTE method could improve the accuracy of classification methods in classifying opinions of user satisfaction with the PeduliLindungi application.
Downloads
References
[2] M. I. Nurmansyah, C. Rosidati, Yustiyani, and N. M. Nasir, “Measuring the Success of PeduliLindungi Application Use for Supporting COVID-19 Prevention: A Case Study among College Students in Jakarta, Indonesia,†Kesmas J. Kesehat. Masy. Nas., vol. 17, no. 1, pp. 11–16, 2022, doi: 10.21109/KESMAS.V17ISP1.6057.
[3] W. Sudiarsa and G. B. Wiraditya, "Heuristic Evaluation Usability Analisys on Information and Tracking Covid-19 Application Peduli Lindungi Using Heuristic Evaluation," J. Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 354–364, 2020.
[4] R. D. Novita and M. A. Razak, "Personal Data Protection in Falsification of Covid-19 Vaccination: A Juridical Review," YURIS (Journal Court Justice), vol. 1, no. 3, pp. 25–37, 2022.
[5] Z. Drus and H. Khalid, "Sentiment Analysis in Social Media and Its Application: Systematic Literature Review," Procedia Comput. Sci., vol. 161, pp. 707–714, 2019, doi: 10.1016/j.procs.2019.11.174.
[6] G. K. Locarso, “Analisis Sentimen Review Aplikasi Pedulilindungi Pada Google Play Store Menggunakan NBC,†J. Tek. Inform. Kaputama, vol. 6, no. 2, pp. 353–361, 2022.
[7] I. Yunanto and S. Yulianto, “Twitter Sentiment Analysis Pedulilindungi Application Using Naïve Bayes and Support Vector Machine,†J. Tek. Inform., vol. 3, no. 4, pp. 807–814, 2022, doi: 10.20884/1.jutif.2022.3.4.292.
[8] A. Salma and W. Silfianti, "Sentiment Analysis of User Review on COVID-19 Information Applications Using Naïve Bayes Classifier, Support Vector Machine, and K-Nearest Neighbors," Int. Res. J. Adv. Eng. Sci., vol. 6, no. 4, pp. 158–162, 2021.
[9] Z. Rais, F. T. T. Hakiki, and R. Aprianti, "Sentiment Analysis of Peduli Lindungi Application Using the Naive Bayes Method," SAINSMAT J. Appl. Sci. Math. Its Educ., vol. 11, no. 1, pp. 23–29, 2022, doi: 10.35877/sainsmat794.
[10] G. A. Lustiansyah et al., “Analisis klasifikasi sentimen pengguna aplikasi pedulilindungi berdasarkan ulasan dengan menggunakan metode long short term memory,†in Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), 2022, pp. 327–336.
[11] I. Saputra, T. Djatna, R. R. A. Siregar, D. A. Kristiyanti, H. R. Yani, and A. A. Riyadi, “Text Mining of PeduliLindungi Application Reviews on Google Play Store,†Fakt. Exacta, vol. 15, no. 2, pp. 101–108, 2022.
[12] A. Mustopa, Hermanto, Anna, E. B. Pratama, A. Hendini, and D. Risdiansyah, "Analysis of user reviews for the pedulilindungi application on google play using the support vector machine and naive bayes algorithm based on particle swarm optimization," in 2020 5th International Conference on Informatics and Computing, ICIC 2020, 2020, vol. 2, pp. 1–7. doi: 10.1109/ICIC50835.2020.9288655.
[13] P. A. Aritonang, M. E. Johan, and I. Prasetiawan, “Aspect-Based Sentiment Analysis on Application Review using CNN (Case Study : Peduli Lindungi Application),†Ultim. Infosys J. Ilmu Sist. Inf., vol. 13, no. 1, pp. 54–61, 2022.
[14] F. S. Darusman, A. A. Arifiyanti, S. Fitri, and A. Wati, “Sentiment Analysis Pedulilindungi Tweet Using Support Vector Machine Method,†Appl. Technol. Comput. Sci. J., vol. 4, no. 2, pp. 113–118, 2022.
[15] H. Hairani, L. Nurhayati, and M. Innuddin, "Web-Based Application for Toddler Nutrition Classification Using C4.5 Algorithm," Int. J. Eng. Comput. Sci. Appl., vol. 1, no. 2, pp. 77–82, 2022, doi: 10.30812/ijecsa.v1i2.2387.
[16] U. Kusnia and F. Kurniawan, “Analisis Sentimen Review Aplikasi Media Berita Online Pada Google Play menggunakan Metode Algoritma Support Vector Machines ( SVM ) Dan Naive Bayes,†J. Keilmuan Apl. Tek. Inform., vol. 5, no. 36, pp. 24–28, 2022, doi: https://doi.org/10.35891/explorit.v14i1.3116.
[17] F. Romadoni, Y. Umaidah, and B. N. Sari, “Text Mining Untuk Analisis Sentimen Pelanggan Terhadap Layanan Uang Elektronik Menggunakan Algoritma Support Vector Machine,†J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 2, pp. 247–253, 2020, doi: 10.32736/sisfokom.v9i2.903.
[18] T. C. Herdiyani and A. U. Zailani, “Sentiment Analysis Terkait Pemindahan Ibu Kota Indonesia Menggunakan Metode Random Forest Berdasarkan Tweet Warga Negara Indonesia,†J. Teknol. Sist. Inf., vol. 3, no. 2, pp. 154–165, Sep. 2022, doi: 10.35957/jtsi.v3i2.2920.
[19] H. Hairani, A. Anggrawan, A. I. Wathan, K. A. Latif, K. Marzuki, and M. Zulfikri, "The Abstract of Thesis Classifier by Using Naive Bayes Method," in 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), 2021, pp. 312–315. doi: 10.1109/ICSECS52883.2021.00063.
[20] H. P. Doloksaribu and Y. T. Samuel, “Komparasi Algoritma Data Mining Untuk Analisis Sentimen Aplikasi Pedulilindungi,†J. Teknol. Inf. J. Keilmuan dan Apl. Bid. Tek. Inform., vol. 16, no. 1, pp. 1–11, 2022.
[21] N. Muna et al., “Penerapan Algoritma Random Forest untuk Analisis Sentimen Komentar di YouTube tentang Islamfobia,†J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 1, pp. 49–54, 2019.
[22] V. Rupapara, F. Rustam, H. F. Shahzad, A. Mehmood, I. Ashraf, and G. S. Choi, "Impact of SMOTE on Imbalanced Text Features for Toxic Comments Classification Using RVVC Model," IEEE Access, vol. 9, pp. 78621–78634, 2021, doi: 10.1109/ACCESS.2021.3083638.
[23] T. Wongvorachan, S. He, and O. Bulut, "A Comparison of Undersampling , Oversampling , and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining," Information, vol. 14, no. 1, pp. 1–15, 2023.
[24] H. Hairani, A. S. Suweleh, and D. Susilowaty, “Penanganan Ketidak Seimbangan Kelas Menggunakan Pendekatan Level Data,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 1, pp. 109–116, 2020, doi: 10.30812/matrik.v20i1.846.
[25] H. Hairani, A. Anggrawan, and D. Priyanto, "Improvement Performance of the Random Forest Method on Unbalanced Diabetes Data Classification Using Smote-Tomek Link," Int. J. Informatics Vis., vol. 7, no. 1, pp. 258–264, 2023.
[26] A. Anggrawan, H. Hairani, and C. Satria, "Improving SVM Classification Performance on Unbalanced Student Graduation Time Data Using SMOTE," Int. J. Inf. Educ. Technol., vol. 13, no. 2, pp. 289–295, 2023, doi: 10.18178/ijiet.2023.13.2.1806.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Taufik Hidayat, Mohammad Ridwan, Muhamad Fajrul Iqbal, Sukisno Sukisno, Robby Rizky, William Eric Manongga, Determining Toddler's Nutritional Status with Machine Learning Classification Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Baiq Rima Mozarita Erdiani, Aryo Yudo Husodo, Ida Bagus Ketut Widiartha, Novel Application of K-Means Algorithm for Unique Sentiment Clustering in 2024 Korean Movie Reviews on TikTok Platform , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Wahyu Styo Pratama, Didik Dwi Prasetya, Triyanna Widyaningtyas, Muhammad Zaki Wiryawan, Lalu Ganda Rady Putra, Tsukasa Hirashima, Performance Evaluation of Artificial Intelligence Models for Classification in Concept Map Quality Assessment , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Nurun Latifah, Ramaditia Dwiyansaputra, Gibran Satya Nugraha, Multiclass Text Classification of Indonesian Short Message Service (SMS) Spam using Deep Learning Method and Easy Data Augmentation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Syahril Efendi, Poltak Sihombing, Sentiment Analysis of Food Order Tweets to Find Out Demographic Customer Profile Using SVM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Rizky Afrinanda, Lusiana Efrizoni, Wirta Agustin, Rahmiati Rahmiati, Hybrid Model for Sentiment Analysis of Bitcoin Prices using Deep Learning Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Sepyan Purnama Kristanto, Lutfi Hakim, Ekstraksi Informasi Destinasi Wisata Populer Jawa Timur Menggunakan Depth-First Crawling , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Supangat Supangat, Mohd Zainuri Bin Saringat, Mochamad Yovi Fatchur Rochman, Predicting Handling Covid-19 Opinion using Naive Bayes and TF-IDF for Polarity Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Ni Wayan Sumartini Saraswati, I Gusti Ayu Agung Diatri Indradewi, Recognize The Polarity of Hotel Reviews using Support Vector Machine , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Ahmad Zein Al Wafi, Febry Putra Rochim, Veda Bezaleel, Investigating Liver Disease Machine Learning Prediction Performancethrough Various Feature Selection Methods , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Anthony Anggrawan, Raisul Azhar, Bambang Krismono Triwijoyo, Mayadi Mayadi, Developing Application in Anticipating DDoS Attacks on Server Computer Machines , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Donny Kurniawan, Anthony Anggrawan, Hairani Hairani, Graduation Prediction System on Students Using C4.5 Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Mayadi Mayadi, Anthony Anggrawan, Pengembangan Sistem Informasi Pemantauan Harga Beras dan Gabah dengan Short Message Gateway , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Ni Gusti Ayu Dasriani, Mayadi Mayadi, Anthony Anggrawan, Klasterisasi Lokasi Promosi PMB Dengan Fuzzy C-means Masa Pandemi Covid 19 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Muhamad Azwar, Sri Winarni Sofya, Riwayati Malika, Hairani Hairani, Juvinal Ximenes Guterres, Combination Forward Chaining and Certainty Factor Methods for Selecting the Best Herbs to Support Independent Health , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Dadang Priyanto, Bambang Krismono Triwijoyo, Deny Jollyta, Hairani Hairani, Ni Gusti Ayu Dasriani, Data Mining Earthquake Prediction with Multivariate Adaptive Regression Splines and Peak Ground Acceleration , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Ni Gusti Ayu Dasriani, Anthony Anggrawan, Pengembangan Sistem Aplikasi Cerdas Memprediksi Penjualan Mebel Berbasis website , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Jihadil Qudsi S., Anthony Anggrawan, EVALUASI PRODUK PEMBELAJARAN MULTIMEDIA (PELIN) EVALUATION OF LEARNING MULTIMEDIA PRODUCT (PELIN) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 1 (2016)
- Khasnur Hidjah, Helna Wardhana, Heroe Santoso, Anthony Anggrawan, SISTEM INFORMASI PEMANTAUAN STATUS GIZI BALITA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 2 (2016)
- Gibran Satya Nugraha, Hairani Hairani, Aplikasi Pemetaan Kualitas Pendidikan di Indonesia Menggunakan Metode K-Means , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 17 No. 2 (2018)