Recognize The Polarity of Hotel Reviews using Support Vector Machine
DOI:
https://doi.org/10.30812/matrik.v22i1.1848Keywords:
Hotel Reviews, K-Fold Cross Validation, Support Vector Machines, Text Classification, TripAdvisor ReviewAbstract
A brand is very dependent on consumer perceptions of the product or services. In assessing consumer perceptions of products and services, companies are often faced with data analysis problems. One of the data that is very useful to produce a picture of consumer perceptions of the products and services is review data. So that the company's ability to process review data means that the company has a picture of the strength of the brand it has. Some of the most popular machine learning algorithms for creating text classification models include the naive Bayes family of algorithms, support vector machines (SVM) and deep learning algorithms. In this research, SVM has been proven to be a reliable method in pattern recognition. In particular, this study aims to produce a model that can be used to classify the polarity of hotel reviews automatically. The experimental data comes from review data on hotels in Europe sourced from TripAdvisor with a total of 38000 reviews. We also measure the quality of the classification engine model. The test results of the SVM model built from hotel review data are quite good. The average accuracy of the classification engine is 92.48%. Because the recall and precision values ​​are balanced, the accuracy value is considered sufficient to describe the quality of the classification.
Downloads
References
[2] N. W. S. Saraswati, K. K. Widiartha, dan L. P. A. Prapitasari, “Vector machine to predict student retention: A computerized approach,†J. Phys. Conf. Ser., vol. 1469, no. 1, 2020, doi: 10.1088/1742-6596/1469/1/012045.
[3] I. G. A. A. D. Indradewi, N. W. S. Saraswati, dan N. W. Wardani, “COVID-19 Chest X-Ray Detection Performance Through Variations of Wavelets Basis Function,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, hal. 31–42, 2021, doi: 10.30812/matrik.v21i1.1089.
[4] N. W. S. Saraswati, N. W. Wardani, dan I. G. A. A. D. Indradewi, “Detection of Covid Chest X-Ray using Wavelet and Support Vector Machines,†Int. J. Eng. Emerg. Technol., vol. 5, no. 2, hal. 116–121, 2020, doi: https://doi.org/10.24843/IJEET.2020.v05.i02.p019.
[5] A. Darmawan, “Penerapan Model Support Vector Machine Text Mining Pada Komentar Review Smartphone Android Vs Blackberry Dengan Teknik Optimasi Genetic Algorithm,†Fakt. Exacta, vol. 8, no. 2, hal. 100–115, 2015, doi: http://dx.doi.org/10.30998/faktorexacta.v8i2.313.
[6] N. W. S. Saraswati, “Text mining dengan metode naïve bayes classifier dan support vector machines untuk sentiment analysis,†Udayana, 2011.
[7] F. Fatmawati dan M. Affandes, “Klasifikasi Keluhan Menggunakan Metode Support Vector Machine (SVM) Pada Akun Facebook Group iRaise Helpdesk,†J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 1, hal. 24, 2018, doi: 10.24014/coreit.v3i1.3552.
[8] F. D. Ananda dan Y. Pristyanto, “Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 2, hal. 407–416, 2021, doi: 10.30812/matrik.v20i2.1130.
[9] S. Efendi dan P. Sihombing, “Sentiment Analysis of Food Order Tweets to Find Out Customer Demographic Profile using SVM,†Matrik J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, 2022, doi: 10.30812/matrik.v21i3.1898.
[10] C. Darujati, “Perbandingan Klasifikasi Dokumen Teks Menggunakan Metode Naïve Bayes Dengan K-Nearest Neighbor,†Univ. Narotama, vol. 13, no. 1, hal. 1–9, 2010.
[11] C. F. Suharno, M. A. Fauzi, dan R. S. Perdana, “Klasifikasi Teks Bahasa Indonesia Pada Dokumen Pengaduan Sambat Online Menggunakan Metode K-Nearest Neighbors Dan Chi-square,†Syst. Inf. Syst. Informatics J., vol. 3, no. 1, hal. 25–32, 2017, doi: 10.29080/systemic.v3i1.191.
[12] J. Harsono, R. M. No, P. Minggu, dan J. S. Jakarta, “Klasifikasi Teks Berbahasa Indonesia Pada Artikel Berita Menggunakan Metode K-Nearest Neighbor Dengan Fungsi Squared Euclidean Distance Classification of Indonesian Text on News Articles Using K-Nearest Neighbor Method With Squared,†BRITech (Jurnal Ilm. Ilmu Komputer, Sains dan Teknol. Ter., vol. 1, no. 2, hal. 60–65, 2020.
[13] A. Ridok dan R. Latifah, “Klasifikasi Teks Bahasa Indonesia Pada Corpus Tak Seimbang Menggunakan NWKNN,†Konf. Nas. Sist. dan Inform. 2015, no. Oktober, hal. 222–227, 2015.
[14] B. M. Hsu, “Comparison of supervised classification models on textual data,†Mathematics, vol. 8, no. 5, 2020, doi: 10.3390/MATH8050851.
[15] U. Desi Arni, “Apa Itu Text Mining ?,†2021. https://garudacyber.co.id/artikel/1254-apa-itu-text-mining (diakses Mar 31, 2021).
[16] T. Wijaya, “Pengertian NLP dan Text Mining,†Algoritma, 2018. https://algorit.ma/blog/data-science/pengertian-text-mining-dan-nlp/ (diakses Mar 31, 2021).
[17] I. P. A. M. Utama, S. S. Prasetyowati, dan Y. Sibaroni, “Multi-Aspect Sentiment Analysis Hotel Review Using RF, SVM, and Naïve Bayes based Hybrid Classifier,†J. Media Inform. Budidarma, vol. 5, no. 2, hal. 630, 2021, doi: 10.30865/mib.v5i2.2959.
[18] A. Taufik, “Komparasi Algoritma Klasifikasi Text Mining Untuk Analisis Sentimen Pada Review Restoran,†J. Tek. Komput. AMIK BSI, vol. 4, no. 2, hal. 112–118, 2018, doi: 10.31294/jtk.v4i2.3461.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Siti Ummi Masruroh, Cong Dai Nguyen, Doni Febrianus, Comparative Analysis of TF-IDF and Modern Text Embedding for theClassification of Islamic Ideologies on Indonesian Twitter , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Putu Tisna Putra, Anthony Anggrawan, Hairani Hairani, Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Taufik Hidayat, Mohammad Ridwan, Muhamad Fajrul Iqbal, Sukisno Sukisno, Robby Rizky, William Eric Manongga, Determining Toddler's Nutritional Status with Machine Learning Classification Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Reo Wicaksono, Didik Dwi Prasetya, Ilham Ari Elbaith Zaeni, Nadindra Dwi Ariyanta, Tsukasa Hirashima, Machine Learning for Open-ended Concept Map Proposition Assessment: Impact of Length on Accuracy , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Syahril Efendi, Poltak Sihombing, Sentiment Analysis of Food Order Tweets to Find Out Demographic Customer Profile Using SVM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- I Gusti Ayu Agung Diatri Indradewi, Ni Wayan Sumartini Saraswati, Ni Wayan Wardani, COVID-19 Chest X-Ray Detection Performance Through Variations of Wavelets Basis Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Baiq Rima Mozarita Erdiani, Aryo Yudo Husodo, Ida Bagus Ketut Widiartha, Novel Application of K-Means Algorithm for Unique Sentiment Clustering in 2024 Korean Movie Reviews on TikTok Platform , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Annisa Nurul Puteri, Suryadi Syamsu, Topan Leoni Putra, Andita Dani Achmad, Support Vector Machine for Predicting Candlestick Chart Movement on Foreign Exchange , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Firda Yunita Sari, Maharani sukma Kuntari, Hani Khaulasari, Winda Ari Yati, Comparison of Support Vector Machine Performance with Oversampling and Outlier Handling in Diabetic Disease Detection Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Budi Sumanto, Salima Nurrahma, Comparison of Random Forest Support Vector Machine and Passive Aggressive Models on E-nose-Based Aromatic Rice Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ni Wayan Sumartini Saraswati, Christina Purnama Yanti, I Dewa Made Krishna Muku, Dewa Ayu Putu Rasmika Dewi, Evaluation Analysis of the Necessity of Stemming and Lemmatization in Text Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Ni Wayan Sumartini Saraswati, Ni Wayan Wardani, Ketut Laksmi Maswari, I Dewa Made Krishna Muku, Rapid Application Development untuk Sistem Informasi Payroll berbasis Web , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Ni Wayan Sumartini Saraswati, I Wayan Dharma Suryawan, Ni Komang Tri Juniartini, I Dewa Made Krishna Muku, Poria Pirozmand, Weizhi Song, Recognizing Pneumonia Infection in Chest X-Ray Using Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Ni Wayan Sumartini Saraswati, Ni Made Lisma Martarini, Extract Transform Loading Data Absensi STMIK STIKOM Indonesia Menggunakan Pentaho , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Dewa Ayu Kadek Pramita, Ni Wayan Sumartini Saraswati, I Putu Dedy Sandana, Poria Pirozmand, I Kadek Agus Bisena, Optimizing Hotel Room Occupancy Prediction Using an Enhanced Linear Regression Algorithms , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- I Gusti Ayu Agung Diatri Indradewi, Ni Wayan Sumartini Saraswati, Ni Wayan Wardani, COVID-19 Chest X-Ray Detection Performance Through Variations of Wavelets Basis Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Ni Wayan Sumartini Saraswati, I Wayan Agustya Saputra, Sistem Monitoring Tekanan Air pada PDAM Gianyar Berbasis Web , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
.png)











