Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application
DOI:
https://doi.org/10.30812/matrik.v22i3.2860Keywords:
Machine Learning, PeduliLindungi Application, Sentiment Analysis, Text MiningAbstract
Since the emergence of the Covid-19 virus, the Indonesian government urged people to study, work, and worship or work from home. The social restriction policy has changed people's behavior which requires physical distance in social interaction. The government developed an application to minimize the spread of Covid-19, namely the PeduliLindungi application. The PeduliLindungi application is a tracking application to prevent the spread of Covid-19. The government's policy of implementing the PeduliLindungi application during Covid-19 aroused pros and cons from the public. The volume of PeduliLindungi application review data on Google Play was increasing, so manual analysis could not be done. New analytical approaches needed to be carried out, such as sentiment analysis. This research aimed to analyze user reviews of the PeduilLindungi application using classification methods, namely Support Vector Machine (SVM), Random Forest, and Naïve Bayes. The methods used were Synthetic Minority Oversampling Technique (SMOTE), Random Forest, SVM, and Naïve Bayes. SMOTE was used to balance user review data on the PeduliLindungi application. After the data had been balanced, classification was carried out. The results of this study showed that the Random Forest method with SMOTE got better accuracy than the SVM and Naive Bayes methods, which was 96.3% based on the division of training and testing data using 10-fold cross-validation. Thus, using the SMOTE method could improve the accuracy of classification methods in classifying opinions of user satisfaction with the PeduliLindungi application.
Downloads
References
[2] M. I. Nurmansyah, C. Rosidati, Yustiyani, and N. M. Nasir, “Measuring the Success of PeduliLindungi Application Use for Supporting COVID-19 Prevention: A Case Study among College Students in Jakarta, Indonesia,†Kesmas J. Kesehat. Masy. Nas., vol. 17, no. 1, pp. 11–16, 2022, doi: 10.21109/KESMAS.V17ISP1.6057.
[3] W. Sudiarsa and G. B. Wiraditya, "Heuristic Evaluation Usability Analisys on Information and Tracking Covid-19 Application Peduli Lindungi Using Heuristic Evaluation," J. Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 354–364, 2020.
[4] R. D. Novita and M. A. Razak, "Personal Data Protection in Falsification of Covid-19 Vaccination: A Juridical Review," YURIS (Journal Court Justice), vol. 1, no. 3, pp. 25–37, 2022.
[5] Z. Drus and H. Khalid, "Sentiment Analysis in Social Media and Its Application: Systematic Literature Review," Procedia Comput. Sci., vol. 161, pp. 707–714, 2019, doi: 10.1016/j.procs.2019.11.174.
[6] G. K. Locarso, “Analisis Sentimen Review Aplikasi Pedulilindungi Pada Google Play Store Menggunakan NBC,†J. Tek. Inform. Kaputama, vol. 6, no. 2, pp. 353–361, 2022.
[7] I. Yunanto and S. Yulianto, “Twitter Sentiment Analysis Pedulilindungi Application Using Naïve Bayes and Support Vector Machine,†J. Tek. Inform., vol. 3, no. 4, pp. 807–814, 2022, doi: 10.20884/1.jutif.2022.3.4.292.
[8] A. Salma and W. Silfianti, "Sentiment Analysis of User Review on COVID-19 Information Applications Using Naïve Bayes Classifier, Support Vector Machine, and K-Nearest Neighbors," Int. Res. J. Adv. Eng. Sci., vol. 6, no. 4, pp. 158–162, 2021.
[9] Z. Rais, F. T. T. Hakiki, and R. Aprianti, "Sentiment Analysis of Peduli Lindungi Application Using the Naive Bayes Method," SAINSMAT J. Appl. Sci. Math. Its Educ., vol. 11, no. 1, pp. 23–29, 2022, doi: 10.35877/sainsmat794.
[10] G. A. Lustiansyah et al., “Analisis klasifikasi sentimen pengguna aplikasi pedulilindungi berdasarkan ulasan dengan menggunakan metode long short term memory,†in Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), 2022, pp. 327–336.
[11] I. Saputra, T. Djatna, R. R. A. Siregar, D. A. Kristiyanti, H. R. Yani, and A. A. Riyadi, “Text Mining of PeduliLindungi Application Reviews on Google Play Store,†Fakt. Exacta, vol. 15, no. 2, pp. 101–108, 2022.
[12] A. Mustopa, Hermanto, Anna, E. B. Pratama, A. Hendini, and D. Risdiansyah, "Analysis of user reviews for the pedulilindungi application on google play using the support vector machine and naive bayes algorithm based on particle swarm optimization," in 2020 5th International Conference on Informatics and Computing, ICIC 2020, 2020, vol. 2, pp. 1–7. doi: 10.1109/ICIC50835.2020.9288655.
[13] P. A. Aritonang, M. E. Johan, and I. Prasetiawan, “Aspect-Based Sentiment Analysis on Application Review using CNN (Case Study : Peduli Lindungi Application),†Ultim. Infosys J. Ilmu Sist. Inf., vol. 13, no. 1, pp. 54–61, 2022.
[14] F. S. Darusman, A. A. Arifiyanti, S. Fitri, and A. Wati, “Sentiment Analysis Pedulilindungi Tweet Using Support Vector Machine Method,†Appl. Technol. Comput. Sci. J., vol. 4, no. 2, pp. 113–118, 2022.
[15] H. Hairani, L. Nurhayati, and M. Innuddin, "Web-Based Application for Toddler Nutrition Classification Using C4.5 Algorithm," Int. J. Eng. Comput. Sci. Appl., vol. 1, no. 2, pp. 77–82, 2022, doi: 10.30812/ijecsa.v1i2.2387.
[16] U. Kusnia and F. Kurniawan, “Analisis Sentimen Review Aplikasi Media Berita Online Pada Google Play menggunakan Metode Algoritma Support Vector Machines ( SVM ) Dan Naive Bayes,†J. Keilmuan Apl. Tek. Inform., vol. 5, no. 36, pp. 24–28, 2022, doi: https://doi.org/10.35891/explorit.v14i1.3116.
[17] F. Romadoni, Y. Umaidah, and B. N. Sari, “Text Mining Untuk Analisis Sentimen Pelanggan Terhadap Layanan Uang Elektronik Menggunakan Algoritma Support Vector Machine,†J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 2, pp. 247–253, 2020, doi: 10.32736/sisfokom.v9i2.903.
[18] T. C. Herdiyani and A. U. Zailani, “Sentiment Analysis Terkait Pemindahan Ibu Kota Indonesia Menggunakan Metode Random Forest Berdasarkan Tweet Warga Negara Indonesia,†J. Teknol. Sist. Inf., vol. 3, no. 2, pp. 154–165, Sep. 2022, doi: 10.35957/jtsi.v3i2.2920.
[19] H. Hairani, A. Anggrawan, A. I. Wathan, K. A. Latif, K. Marzuki, and M. Zulfikri, "The Abstract of Thesis Classifier by Using Naive Bayes Method," in 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), 2021, pp. 312–315. doi: 10.1109/ICSECS52883.2021.00063.
[20] H. P. Doloksaribu and Y. T. Samuel, “Komparasi Algoritma Data Mining Untuk Analisis Sentimen Aplikasi Pedulilindungi,†J. Teknol. Inf. J. Keilmuan dan Apl. Bid. Tek. Inform., vol. 16, no. 1, pp. 1–11, 2022.
[21] N. Muna et al., “Penerapan Algoritma Random Forest untuk Analisis Sentimen Komentar di YouTube tentang Islamfobia,†J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 1, pp. 49–54, 2019.
[22] V. Rupapara, F. Rustam, H. F. Shahzad, A. Mehmood, I. Ashraf, and G. S. Choi, "Impact of SMOTE on Imbalanced Text Features for Toxic Comments Classification Using RVVC Model," IEEE Access, vol. 9, pp. 78621–78634, 2021, doi: 10.1109/ACCESS.2021.3083638.
[23] T. Wongvorachan, S. He, and O. Bulut, "A Comparison of Undersampling , Oversampling , and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining," Information, vol. 14, no. 1, pp. 1–15, 2023.
[24] H. Hairani, A. S. Suweleh, and D. Susilowaty, “Penanganan Ketidak Seimbangan Kelas Menggunakan Pendekatan Level Data,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 1, pp. 109–116, 2020, doi: 10.30812/matrik.v20i1.846.
[25] H. Hairani, A. Anggrawan, and D. Priyanto, "Improvement Performance of the Random Forest Method on Unbalanced Diabetes Data Classification Using Smote-Tomek Link," Int. J. Informatics Vis., vol. 7, no. 1, pp. 258–264, 2023.
[26] A. Anggrawan, H. Hairani, and C. Satria, "Improving SVM Classification Performance on Unbalanced Student Graduation Time Data Using SMOTE," Int. J. Inf. Educ. Technol., vol. 13, no. 2, pp. 289–295, 2023, doi: 10.18178/ijiet.2023.13.2.1806.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Frans Mikael Sinaga, Sio Jurnalis Pipin, Sunaryo Winardi, Karina Mannita Tarigan, Ananda Putra Brahmana, Analyzing Sentiment with Self-Organizing Map and Long Short-Term Memory Algorithms , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Hermila A., Rahmat Taufik R. L Bau, Sitti Suhada, Abdulaziz Ahmed siyad, Predicting Gen Z’s Sentiments on Gorontalo’s CulturalWisdom UsingSentiment Analysis Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Annisa Nurul Puteri, Suryadi Syamsu, Topan Leoni Putra, Andita Dani Achmad, Support Vector Machine for Predicting Candlestick Chart Movement on Foreign Exchange , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Abd Mizwar A Rahim, Andi Sunyoto, Muhammad Rudyanto Arief, Stroke Prediction Using Machine Learning Method with Extreme Gradient Boosting Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Christofer Satria, Peter Wijaya Sugijanto, Anthony Anggrawan, I Nyoman Yoga Sumadewa, Aprilia Dwi Dayani, Rini Anggriani, Multi-Algorithm Approach to Enhancing Social Assistance Efficiency Through Accurate Poverty Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Dimas Afryzal Hanan, Ario Yudo Husodo, Regania Pasca Rassy, Sentiment Study of ChatGPT on Twitter Data with Hybrid K-Means and LSTM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Helna Wardhana, I Made Yadi Dharma, Khairan Marzuki, Ibjan Syarif Hidayatullah, Implementation of Neural Machine Translation in Translating from Indonesian to Sasak Language , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Sucipto Sucipto, Didik Dwi Prasetya, Triyanna Widiyaningtyas, Educational Data Mining: Multiple Choice Question Classification in Vocational School , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Danang Wahyu Utomo, Christy Atika Sari, Folasade Olubusola Isinkaye, Quality Improvement for Invisible Watermarking using Singular Value Decomposition and Discrete Cosine Transform , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Anthony Anggrawan, Analisis Deskriptif Hasil Belajar Pembelajaran Tatap Muka dan Pembelajaran Online Menurut Gaya Belajar Mahasiswa , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Lusiana Efrizoni, Sarjon Defit, Muhammad Tajuddin, Anthony Anggrawan, Komparasi Ekstraksi Fitur dalam Klasifikasi Teks Multilabel Menggunakan Algoritma Machine Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Anthony Anggrawan, Satuang Satuang, Mokhammad Nurkholis Abdillah, Sistem Pakar Diagnosis Penyakit Ayam Broiler Menggunakan Forward Chaining dan Certainty Factor , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Anthony Anggrawan, Mayadi Mayadi, Christofer Satria, Menentukan Akurasi Tata Letak Barang dengan Menggunakan Algoritma Apriori dan Algoritma FP-Growth , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Lalu Ganda Rady Putra, Anthony Anggrawan, Pengelompokan Penerima Bantuan Sosial Masyarakat dengan Metode K-Means , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Bambang Krismono Triwijoyo, Ahmat Adil, Anthony Anggrawan, Convolutional Neural Network With Batch Normalization for Classification of Emotional Expressions Based on Facial Images , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Dyah Susilowati, Hairani Hairani, Indah Puji Lestari, Khairan Marzuki, Lalu Zazuli Azhar Mardedi, Segmentasi Lokasi Promosi Penerimaan Mahasiswa Baru Menggunakan Metode RFM dan K-Means Clustering , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Christofer Satria, Anthony Anggrawan, Aplikasi K-Means berbasis Web untuk Klasifikasi Kelas Unggulan , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Anthony Anggrawan, Mayadi Mayadi, Application of KNN Machine Learning and Fuzzy C-Means to Diagnose Diabetes , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Christofer Satria, Peter Wijaya Sugijanto, Anthony Anggrawan, I Nyoman Yoga Sumadewa, Aprilia Dwi Dayani, Rini Anggriani, Multi-Algorithm Approach to Enhancing Social Assistance Efficiency Through Accurate Poverty Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)