Hybrid Model for Sentiment Analysis of Bitcoin Prices using Deep Learning Algorithm
DOI:
https://doi.org/10.30812/matrik.v22i2.2640Keywords:
Sentiment analysis, Bitcoin, Hybrid model, Convolutional Neural Network, Long Short Term MemoryAbstract
Bitcoin is a decentralized digital currency, which is not controlled by a single authority or government. Bitcoin uses blockchain technology to verify transactions and guarantee user security and privacy. The fluctuating value of bitcoin is influenced by opinions that develop because many people use these opinions as a basis for buying or selling bitcoins. Knowledge to find out the market conditions of bitcoin based on public opinion is very necessary. This study aims to develop a hybrid model for bitcoin sentiment analysis. The dataset used came from comments on the Indodax website chat room, as many as 2890 data were successfully collected, then do data preprocessing, translate to english, text labeling and used hybrid parallel CNN and LSTM using word embedding glove 100 dimensions. Results of the experiments conducted, at 90:10 data splitting and 100 epochs is the best model with 88% accuracy, 86% precision, 78% recall and 81% f1-score, while the classification of opinion text comments on indodax chat results in 64.22% neutral comments, 21.14% positive comments and 14.63% negative comments. Based on research results, use of a parallel hybrid model provides a high accuracy value in classifying text, from these results positive comments are more than negative so that investors are advised to buy bitcoins.
Downloads
References
[2] I. G. H. Saputra and I. D. P. S. Wardana, “Perlindungan Hukum Terhadap Masyarakat Pengguna Sistem Pembayaran Bitcoin dan Investasi Bitcoin di Indonesia ditinjau dari Hukum Perlindungan Konsumen,†J. Pacta Sunt Servanda, vol. 2, no. 2, pp. 24–35, 2021.
[3] A. K. Umam, O. H. P. Wardhana, and I. H. Hany, “Dinamika Cryptocurrency Dan Misi Ekonomi Islam,†An-Nisbah J. Ekon. Syariah, vol. 7, no. 2, pp. 366–386, 2020, doi: 10.21274/an.v7i02.3366.
[4] K. Fitriani, I. Isbandi, and A. Amaliyah, “Perancangan Sistem Manajemen Dokumen Dengan Menggunakan Metode Text Mining Di Kantor Kelurahan Sekejati,†Telematika, vol. 3, no. 1, pp. 45–59, 2021.
[5] A. Firdaus and W. I. Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan),†J. JUPITER, vol. 13, no. 1, pp. 66–78, 2021.
[6] A. Z. Amrullah, A. Sofyan Anas, and M. A. J. Hidayat, “Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square,†J. Bite, vol. 2, no. 1, pp. 40–44, 2020, doi: 10.30812/bite.v2i1.804.
[7] D. I. Af’idah, D. Dairoh, S. F. Handayani, R. W. Pratiwi, and S. I. Sari, “Sentimen Ulasan Destinasi Wisata Pulau Bali Menggunakan Bidirectional Long Short Term Memory,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 607–618, 2022, doi: 10.30812/matrik.v21i3.1402.
[8] A. Faesal, A. Muslim, A. H. Ruger, and K. Kusrini, “Sentimen Analisis Terhadap Komentar Konsumen Terhadap Produk Penjualan Toko Online Menggunakan Metode K-Means,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 19, no. 2, pp. 207–213, May 2020, doi: 10.30812/matrik.v19i2.640.
[9] H. Fonda, “Klasifikasi Batik Riau Dengan Menggunakan Convolutional Neural Networks (Cnn),†J. Ilmu Komput., vol. 9, no. 1, pp. 7–10, 2020, doi: 10.33060/jik/2020/vol9.iss1.144.
[10] M. Z. Ersyad, K. N. Ramadhani, and A. Arifianto, “Pengenalan Bentuk Tangan Dengan Convolutional Neural Network (Cnn),†eProceedings Eng., vol. 7, no. 2, pp. 8212–8222, 2020.
[11] P. A. Qori, D. S. Oktafani, and I. Kharisudin, “Analisis Peramalan dengan Long Short Term Memory pada Data Kasus Covid-19 di Provinsi Jawa Tengah,†in PRISMA, Prosiding Seminar Nasional Matematika, 2022, pp. 752–758.
[12] E. Irawati Setiawan, A. Ferdianto, J. Santoso, Y. Kristian, S. Sumpeno, and M. Hery Purnomo, “Analisis Pendapat Masyarakat terhadap Berita Kesehatan Indonesia menggunakan Pemodelan Kalimat berbasis LSTM (Indonesian Stance Analysis of Healthcare News using Sentence Embedding Based on LSTM),†J. Nas. Tek. Elektro dan Teknol. Inf. |, vol. 9, no. 1, pp. 8–17, 2020.
[13] R. W. Sandra, Y. Vitriani, M. Affandes, and S. Sanjaya, “Cryptocurrency Sentiment Classification Based on Comments On Facebook Using K-Nearest Neighbor,†Int. J. Inf. Syst. Technol. Akreditasi, vol. 6, no. 158, pp. 259–269, 2022.
[14] R. Azhar, A. Surahman, and C. Juliane, “Analisis Sentimen Terhadap Cryptocurrency Berbasis Python TextBlob Menggunakan Algoritma Naïve Bayes,†J. Sains Komput. Inform., vol. 6, no. 1, pp. 267–281, 2022.
[15] A. P. F. F. Y. N. K. E. S. N. W. Chandra, “Sentiment Analisis Terhadap Cryptocurrency Berdasarkan Comment Dan Reply Pada Platform Twitter,†J. Inf. Syst. Informatics, vol. 3, no. 2, pp. 268–277, 2021, [Online]. Available: http://journal-isi.org/index.php/isi/article/view/124/72
[16] D. R. Alghifari, M. Edi, and L. Firmansyah, “Implementasi Bidirectional LSTM untuk Analisis Sentimen Terhadap Layanan Grab Indonesia,†J. Manaj. Inform., vol. 12, no. 2, pp. 89–99, 2022, doi: 10.34010/jamika.v12i2.7764.
[17] D. T. Hermanto, A. Setyanto, and E. T. Luthfi, “Algoritma LSTM-CNN untuk Binary Klasifikasi dengan Word2vec pada Media Online,†Creat. Inf. Technol. J., vol. 8, no. 1, pp. 64–77, 2021, doi: 10.24076/citec.2021v8i1.264.
[18] D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,†J. Tekno Kompak, vol. 15, no. 1, pp. 131–145, 2021, doi: 10.33365/jtk.v15i1.744.
[19] D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,†Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.
[20] R. Sanusi, F. D. Astuti, and I. Y. Buryadi, “Analisis Sentimen Pada Twitter Terhadap Program Kartu Pra Kerja Dengan Recurrent Neural Network,†JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 2, pp. 89–99, 2021, doi: 10.26798/jiko.v5i2.645.
[21] P. L. Parameswari and Prihandoko, “Penggunaan Convolutional Neural Network Untuk Analisis Sentimen Opini Lingkungan Hidup Kota Depok Di Twitter,†J. Ilm. Teknol. dan Rekayasa, vol. 27, no. 1, pp. 29–42, 2022, doi: 10.35760/tr.2022.v27i1.4671.
[22] M. Z. Rahman, Y. A. Sari, and N. Yudistira, “Analisis Sentimen Tweet COVID-19 menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM),†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 11, pp. 5120–5127, 2021, [Online]. Available: http://j-ptiik.ub.ac.id
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Vivin Nur Aziza, Utami Dyah Syafitri, Anwar Fitrianto, Optimizing Currency Circulation Forecasts in Indonesia: A Hybrid Prophet- Long Short Term Memory Model with Hyperparameter Tuning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Helna Wardhana, I Made Yadi Dharma, Khairan Marzuki, Ibjan Syarif Hidayatullah, Implementation of Neural Machine Translation in Translating from Indonesian to Sasak Language , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Rahman Rahman, Teguh Iman Hermanto, Meriska Defriani, Hyperparamaters Fine Tuning for Bidirectional Long Short Term Memory on Food Delivery , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Ahmad Ashril Rizal, Siti Soraya, Multi Time Steps Prediction dengan Recurrent Neural Network Long Short Term Memory , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
- Aini Suri Talita, Aristiawan Wiguna, Implementasi Algoritma Long Short-Term Memory (LSTM) Untuk Mendeteksi Ujaran Kebencian (Hate Speech) Pada Kasus Pilpres 2019 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Mukhlis Mukhlis, Puput Yuniar Maulidia, Achmad Mujib, Adi Muhajirin, Alpi Surya Perdana, Integration of Deep Learning and Autoregressive Models for Marine Data Prediction , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Willy Riyadi, Jasmir Jasmir, Performance Prediction of Airport Traffic Using LSTM and CNN-LSTM Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Frans Mikael Sinaga, Sio Jurnalis Pipin, Sunaryo Winardi, Karina Mannita Tarigan, Ananda Putra Brahmana, Analyzing Sentiment with Self-Organizing Map and Long Short-Term Memory Algorithms , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Fitra Ahya Mubarok, Mohammad Reza Faisal, Dwi Kartini, Dodon Turianto Nugrahadi, Triando Hamonangan Saragih, Gender Classification of Twitter Users Using Convolutional Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Lusiana Efrizoni, Sarjon Defit, Muhammad Tajuddin, Anthony Anggrawan, Komparasi Ekstraksi Fitur dalam Klasifikasi Teks Multilabel Menggunakan Algoritma Machine Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Lusiana Efrizoni, Junadhi Junadhi, Agustin Agustin, Optimization of Content Recommendation System Based on User Preferences Using Neural Collaborative Filtering , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)