Analisis Model Machine Learning Terhadap Pengenalan Aktifitas Manusia
DOI:
https://doi.org/10.30812/matrik.v19i2.688Keywords:
Machine Learning, Linear Regression, SVM, Decision Tree, Linear SVCAbstract
Aktivitas-aktivitas manusia diklasifikasikan dengan menggunakan sensor responsif dari gerakan manusia yang disebut pengguna. Karya ilmiah ini berfokus pada penggunaan model klasifikasi pendekatan pembelajaran mesin yang berbeda. Dalam penelitian ini, data yang digunakan diambil dari open source yang diklasifikasikan untuk mengenali aktivitas manusia di mana percobaannya telah dilakukan dengan sekelompok 30 sukarelawan dalam berbagai kelompok usia. Setiap orang melakukan enam aktivitas mengenakan smartphone di bagian pinggang. Dengan menggunakan accelerometer dan gyroscope yang tertanam, ditangkap akselerasi linear 3-aksial dan kecepatan sudut 3-aksial pada kecepatan konstan 50Hz. Dataset yang diperoleh telah dipartisi secara acak menjadi dua set, di mana 70% sukarelawan dipilih untuk menghasilkan data training dan 30% untuk data uji. Hasil pendekatan yang digunakan dibandingkan dalam hal efisiensi akurasi dan presisi. Model yang digunakan adalah regresi logistik, linear SVC, rbf SVM classifier, decision tree, dan random forest.
Downloads
References
[2] J. H. Friedman, “Data Mining and Statistics: What’s the connection?,†Statistics (Ber)., 1997.
[3] S. Russell dan P. Norvig, Artificial Intelligence A Modern Approach Third Edition. 2010.
[4] M. Mohri, A. Rostamizadeh, dan A. Talwalkar, Foundations of Machine Learning (Adaptive Computation and Machine Learning series). 2012.
[5] T. Mitchell, Machine Learning. McGraw Hill, 1997.
[6] V. Roman, “Unsupervised Machine Learning: Clustering Analysis -- Towards Data Science,†Towar. Data Sci., 2019.
[7] D. A. Freedman, Statistical models: Theory and practice. 2009.
[8] H. J. Scudder, “Probability of Error of Some Adaptive Pattern-Recognition Machines,†IEEE Transactions on Information Theory. 1965, doi: 10.1109/TIT.1965.1053799.
[9] H. L. Seal, “Studies in the History of Probability and Statistics. XV: The Historical Development of the Gauss Linear Model,†Biometrika, 1967, doi: 10.2307/2333849.
[10] C. Cortes dan V. Vapnik, “Support-Vector Networks,†Mach. Learn., 1995, doi: 10.1023/A:1022627411411.
[11] L. Rokach dan O. Maimon, Data mining with decision trees : theroy and applications. 2008.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Dwi Intan Af'idah, Dairoh Dairoh, Sharfina Febbi Handayani, Riszki Wijayatun Pratiwi, Susi Indah Sari, Sentimen Ulasan Destinasi Wisata Pulau Bali Menggunakan Bidirectional Long Short Term Memory , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Dadang Priyanto, Bambang Krismono Triwijoyo, Deny Jollyta, Hairani Hairani, Ni Gusti Ayu Dasriani, Data Mining Earthquake Prediction with Multivariate Adaptive Regression Splines and Peak Ground Acceleration , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Reni Fatrisna Salsabila, Didik Dwi Prasetya, Triyanna Widyaningtyas, Tsukasa Hirashima, Comparison of Text Representation for Clustering Student Concept Maps , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Dedi Setiadi, Yogi Isro Mukti, Electronic Tourism Using Decision Support Systems to Optimize the Trips , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Muhammad Alkaff, Husnul Khatimi, Andi Eriadi, Sistem Rekomendasi Buku pada Perpustakaan Daerah Provinsi Kalimantan Selatan Menggunakan Metode Content-Based Filtering , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Faisal Reza Pradhana, Ilham Mufandi, Aziz Musthafa, Dian Afif Arifah, Khairul Munzilin Al Kahfi, Implementation of Conversational Artificial Intelligence in a3-Dimensional Game onWaste Impact , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Andris Faesal, Aziz Muslim, Aditya Hastami Ruger, Kusrini Kusrini, Sentimen Analisis pada Data Tweet Pengguna Twitter Terhadap Produk Penjualan Toko Online Menggunakan Metode K-Means , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Samsurizal Samsurizal, Arif Nur Afandi, Mohamad Rodhi Faiz, Artificial Intelligence Enhanced Direct Current Fast ChargingIntegration for Electric Vehicles on 20 kV Grids: A Technical andOntological Study , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Tjut Awaliyah Zuraiyah, Sufiatul Maryana, Asep Kohar, Automatic Door Access Model Based on Face Recognition using Convolutional Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
You may also start an advanced similarity search for this article.
.png)











