Automatic Door Access Model Based on Face Recognition using Convolutional Neural Network
DOI:
https://doi.org/10.30812/matrik.v22i1.2350Keywords:
Automatic door access, Amason face recognition, Convolutional Neural Network, Facial recognition, RaspberryAbstract
Automatic door access technology by utilizing biometrics such as fingerprints, retinas and facial structures is constantly evolving. The use of masks during the Covid-19 Pandemic and post-pandemic has become an obligation wherever humans are active. The study aimed to create an automated door access model using Convolutional Neural Network (CNN) algorithms and Amazon Rekognition as cloud-based software. The CNN algorithm is applied to classify faces wearing masks or not wearing masks. The CNN architecture model uses sequential, convolution2D, max polling 2D, flatten dan dense. The hardware includes the Raspberry Pi, USB Webcam, Relay, and Magnetic Doorlock. The test results were obtained from the results of the accuracy plot on the Convolutional Neural Network model with an accuracy rate of 99% at an epoch value of 8 with a learning time of 67 seconds.
Downloads
References
[2] M. Abdul, R. Irham, and D. A. Prasetya, “Prototipe Pendeteksi Masker Pada Ruangan Wajib Masker untuk Kendali Pintu Otomatis Berbasis Deep Learning Sebagai Pencegahan Penularan Covid-19,†Prototipe Pendeteksi Masker Pada Ruangan Wajib Masker Untuk Kendali Pintu Otomatis Berbasis Deep Learning Sebagai Pencegahan Penularan Covid-19, pp. 47–55, 2020.
[3] H. W. N. Agusti and B. A. Gisela, “Pengenalan Wajah dengan Menggunakan Smartphone : Sistematik Review,†Journal of Indonesian Forensic and Legal Medicine, vol. 2, no. 2, pp. 156–163, 2020.
[4] A. Apriani, H. Zakiyudin, and K. Marzuki, “Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF System Penerimaan Mahasiswa Baru pada Kampus Swasta,†Jurnal Bumigora Information Technology (BITe), vol. 3, no. 1, pp. 19–27, 2021, doi: 10.30812/bite.v3i1.1110.
[5] I. F. Ashari, M. D. Satria, and M. Idris, “Parking System Optimization Based on IoT using Face and Vehicle Plat Recognition via Amazon Web Service and ESP-32 CAM,†Computer Engineering and Applications Journal, vol. 11, no. 2, pp. 137–153, 2022, doi: 10.18495/comengapp.v11i2.409.
[6] M. F. Aslan, K. Sabanci, A. Durdu, and M. F. Unlersen, “COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization,†Computers in Biology and Medicine, 2020.
[7] M. N. Baay, A. N. Irfansyah, and M. Attamimi, “Sistem Otomatis Pendeteksi Wajah Bermasker Menggunakan Deep Learning,†Jurnal Teknik ITS, vol. 10, no. 1, pp. 64–70, Aug. 2021, doi: 10.12962/j23373539.v10i1.59790.
[8] A. H. Bachtiar, P. P. Surya, and R. P. Astutik, “Rancang Bangun Dual Keamanan Sistem Pintu Rumah Menggunakan Pengenalan Wajah dan Sidik Jari Berbasis Iot (Internet of Things),†Jurnal POLEKTRO: Jurnal Power Elektronik, vol. 1, no. 1, pp. 102–107, 2022.
[9] A. D, “Face Recognition using Machine Learning Algorithms,†JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, vol. 14, no. 3, Jun. 2019, doi: 10.26782/jmcms.2019.06.00017.
[10] P. Elechi, E. Okowa, and U. Ekwueme, “Facial Recognition Based Smart Door Lock System,†FUPRE Journal of Scientific and Industrial Research, vol. 6, no. 2, pp. 95–105, 2022.
[11] A. Febriansyah, J. Saputra, and P. Desvirati, “Alat Pendeteksi Suhu Tubuh dan Wajah (Kebutuhan Bukti Kehadiran) Berbasis Data,†Manutech : Jurnal Teknologi Manufaktur, vol. 14, no. 01, pp. 1–6, 2022.
[12] Gaurav Dhiman, Srihari. K, Ramesh. R, and Udayakumar. E, “An Innovative Approach for Face Recognition Using Raspberry Pi,†Artificial Intelligence Evolution, vol. 10, no. 1, pp. 102–107, Aug. 2020, doi: 10.37256/aie.12202062.
[13] H. Hairani, A. S. Suweleh, and D. Susilowaty, “Penanganan Ketidak Seimbangan Kelas Menggunakan Pendekatan Level Data,†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 1, pp. 109–116, 2020, doi: 10.30812/matrik.v20i1.846.
[14] A. Hassouneh, A. M. Mutawa, and M. Murugappan, “Development of a Real-Time Emotion Recognition System Using Facial Expressions and EEG based on machine learning and deep neural network methods,†Informatics in Medicine Unlocked, vol. 20, no. 1, pp. 2–9, 2020, doi: 10.1016/j.imu.2020.100372.
[15] S. E. Oltean, “Mobile Robot Platform with Arduino Uno and Raspberry Pi for Autonomous Navigation,†Procedia Manufacturing, vol. 32, pp. 572–577, 2019, doi: 10.1016/j.promfg.2019.02.254.
[16] R. R. Ramdhani, R. I. Adam, and A. A. Ridha, “Implementasi Deep Learning Untuk Deteksi Masker Deep Learning Implementation for Face Mask Detection,†Journal of Information Technology and Computer Science (INTECOMS), vol. 4, no. 2, p. 2021, 2021.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Bambang Krismono Triwijoyo, Ahmat Adil, Anthony Anggrawan, Convolutional Neural Network With Batch Normalization for Classification of Emotional Expressions Based on Facial Images , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Bambang Krismono Triwijoyo, Model Fast Tansfer Learning pada Jaringan Syaraf Tiruan Konvolusional untuk Klasifikasi Gender Berdasarkan Citra Wajah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Melinda Melinda, Zharifah Muthiah, Fitri Arnia, Elizar Elizar, Muhammad Irhmasyah, Image Data Acquisition and Classification of Vannamei Shrimp Cultivation Results Based on Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Ni Wayan Sumartini Saraswati, I Wayan Dharma Suryawan, Ni Komang Tri Juniartini, I Dewa Made Krishna Muku, Poria Pirozmand, Weizhi Song, Recognizing Pneumonia Infection in Chest X-Ray Using Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Miftahus Sholihin, Mohd Farhan Bin Md. Fudzee, Lilik Anifah, A Novel CNN-Based Approach for Classification of Tomato Plant Diseases , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Muhammad Furqan Nazuli, Muhammad Fachrurrozi, Muhammad Qurhanul Rizqie, Abdiansah Abdiansah, Muhammad Ikhsan, A Image Classification of Poisonous Plants Using the MobileNetV2 Convolutional Neural Network Model Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Bambang Suprihatin, Yuli Andriani, Fauziah Nuraini Kurdi, Anita Desiani, Ibra Giovani Dwi Putra, Muhammad Akmal Shidqi, Lungs X-Ray Image Segmentation and Classification of Lung Disease using Convolutional Neural Network Architectures , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Achmad Lukman, Wahju Tjahjo Saputro, Erni Seniwati, Improving Performance Convolutional Neural Networks Using Modified Pooling Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Didih Rizki Chandranegara, Faras Haidar Pratama, Sidiq Fajrianur, Moch Rizky Eka Putra, Zamah Sari, Automated Detection of Breast Cancer Histopathology Image Using Convolutional Neural Network and Transfer Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
You may also start an advanced similarity search for this article.