Cranioplasty Training Innovation Using Design Thinking: AugmentedReality and Interchangeability-Based Mannequin Prototype
DOI:
https://doi.org/10.30812/matrik.v24i3.5055Keywords:
Augmented Reality, Cranioplasty, Interchangeability, Lay Outing, Medical MannequinAbstract
Cranioplasty, a surgical procedure to reconstruct the anatomical structure of the human skull, is commonly
performed in Indonesia due to the malignancy of diseases, traffic accidents, and workplace
injuries. If left untreated, this condition can lead to serious complications. Although cranioplasty is
generally considered a relatively easy surgery, it has a fairly high postoperative complication rate of
around 10.3%. The decreasing availability of cadavers for anatomical studies has significantly limited
training opportunities. Therefore, efficient and effective training tools are essential, especially when
traditional resources are insufficient to meet educational needs. Additionally, the training capabilities
of commercially available mannequins or replicas used in medical institutions remain limited. The
main objective of this project was to develop a smart, modular cranioplasty training mannequin designed
for repeated use, incorporating Augmented Reality (AR) technology to visualize anatomical
structures that cannot be physically replicated. Using a design thinking approach, data was collected
through interviews with neurosurgeons, neurosurgery residents, and cranioplasty specialists, as well as
through a review of relevant literature. Usability testing of the developed prototype yielded promising
results, with high ratings for ease of use (4.8), training effectiveness (4.5), anatomical realism (4.3),
and material durability (4.5) on a 5-point Likert scale. These findings demonstrated strong user approval
and confirmed the model’s potential to support surgical skill development in a practical and
reproducible manner. The resulting AR-integrated training mannequin offers an innovative, engaging,
and durable solution to address current challenges in neurosurgical education, especially in resourceconstrained
settings.
Downloads
References
[1] W. Niryana, D.Wardhana, H. Koerniawan, and S. Mallawan, “Kranioplasti untuk Kasus Cedera Kepala,” Cermin Dunia Kedokteran,
vol. 45, no. 8, pp. 624–627, 2018, https://doi.org/10.55175/cdk.v45i8.744.
[2] A. S. Wicaksono, D. Tamba, and P. Sudiharto, “Neurosurgery residency program in Yogyakarta, Indonesia: improving neurosurgical
care distribution to reduce inequality,” Neurosurg Focus, 2019, https://doi.org/10.3171/2019.12.
[3] A. Burgos and V. Mosquera, Impact of Augmented Reality on the Teaching of Anatomy: A Study in Health Sciences Students,
sep 2024, https://doi.org/10.1109/ANDESCON61840.2024.10755930.
[4] A. R. Harseno, D. Kuswanto, M. A. Samboro, G. T. Maharany, I. Arlianti, A. N. Firmansyah, R. A. Fitri, A. K. Wicaksono, and
L. W. O. Haryanto, “Augmented Reality as an Assistive Tool for Learning How to Use Medical Devices,” KnE Social Sciences,
vol. 9, no. 32, pp. 310–318, 2024, https://doi.org/10.18502/kss.v9i32.17444.
[5] J. A. M. van Doormaal and T. P. C. van Doormaal, “Augmented Reality in Neurosurgery BT - Computational Neurosurgery,”
A. Di Ieva, E. Suero Molina, S. Liu, and C. Russo, Eds. Cham: Springer Nature Switzerland, November, 2024, pp. 351–374,
https://doi.org/10.1007/978-3-031-64892-2 21.
[6] M. Dalili, M. Salami, F. Soheili, and S. Ziaei, “Augmented reality technology in the libraries of universities of medical sciences:
identifying the application, advantages and challenges and presenting a model,” Library Hi Tech, vol. ahead-of-p, jun 2021,
https://doi.org/10.1108/LHT-01-2021-0033.
[7] M. Ganau, H. Cebula, M. Fricia, I. Zaed, J. Todeschi, A. Scibilia, P. Gallinaro, A. Coca, D. Chaussemy, I. Ollivier, G. K. I.
Ligarotti, M. des Neiges Santin, F. Proust, and S. Chibbaro, “Surgical preference regarding different materials for custom-made
allograft cranioplasty in patients with calvarial defects: Results from an internal audit covering the last 20 years,” Journal of
Clinical Neuroscience, vol. 74, pp. 98–103, April, 2020, https://doi.org/10.1016/j.jocn.2020.01.087.
[8] M. Squalli Houssaini, A. Aboutajeddine, I. Toughrai, and A. Ibrahimi, “Development of a design course for medical curriculum:
Using design thinking as an instructional design method empowered by constructive alignment and generative AI,” Thinking
Skills and Creativity, vol. 52, p. 101491, June, 2024, https://doi.org/10.1016/j.tsc.2024.101491.
[9] D. Wang, J. Zhu, X. Xie, R. Martin-Payo, L. Xu, and F. Zhang, “Trends and hotspots of design thinking in nursing research: A
bibliometric analysis,” Journal of Professional Nursing, vol. 58, pp. 51–60, May-June, 2025, https://doi.org/10.1016/j.profnurs.
2025.02.005.
[10] M. M. Khashaba, H. A. Shaheen, W. H. Ibrahim, and D. G. AlDainy, “Accuracy of patient-specific temporal implants using
PEKK,” Journal of Cranio-Maxillofacial Surgery, vol. 49, no. 10, pp. 943–949, 2021, https://doi.org/10.1016/j.jcms.2021.05.
001.
[11] S. Ricci, A. Calandrino, G. Borgonovo, M. Chirico, and M. Casadio, “Viewpoint: Virtual and Augmented Reality in Basic and
Advanced Life Support Training,” JMIR Serious Games, vol. 10, no. 1, p. e28595, 2022, https://doi.org/10.2196/28595.
[12] M. Lang, S. Ghandour, B. Rikard, E. K. Balasalle, M. R. Rouhezamin, H. Zhang, and R. N. Uppot, “Medical Extended Reality
for Radiology Education and Training.” Journal of the American College of Radiology : JACR, vol. 21, no. 10, pp. 1583–1594,
jun 2024, https://doi.org/10.1016/j.jacr.2024.05.006.
[13] C. L. Foronda, L. Gonzalez, M. M. Meese, N. Slamon, M. Baluyot, J. Lee, and M. Aebersold, “A Comparison of Virtual Reality
to Traditional Simulation in Health Professions Education: A Systematic Review,” Simulation in Healthcare, vol. 19, no. 1S,
pp. S90–S97, 2024, https://doi.org/10.1097/SIH.0000000000000745.
[14] Y. M. Tang, K. Y. Chau, A. P. K. Kwok, T. Zhu, and X. Ma, “A systematic review of immersive technology applications for
medical practice and education - Trends, application areas, recipients, teaching contents, evaluation methods, and performance,”
Educational Research Review, vol. 35, p. 100429, February, 2022, https://doi.org/10.1016/j.edurev.2021.100429.
[15] R. M. Viglialoro, S. Condino, G. Turini, M. Carbone, V. Ferrari, and M. Gesi, “Augmented Reality, Mixed Reality, and Hybrid
Approach in Healthcare Simulation: A Systematic Review,” vol. 11, no. 5, p. 2338, 2021, https://doi.org/10.3390/app11052338.
[16] J. R. Abbas, M. M. H. Chu, C. Jeyarajah, R. Isba, A. Payton, B. McGrath, N. Tolley, and I. Bruce, “Virtual reality in simulationbased
emergency skills training: A systematic review with a narrative synthesis,” Resuscitation Plus, vol. 16, p. 100484, December,
2023, https://doi.org/10.1016/j.resplu.2023.100484.
[17] D. Henssen, J. Karstens, G. De Jong, J. Duits, L. Boer, M. Brink, T. Maal, and L. Peters-Bax, “Implementing 3D Printing and
Extended Reality in Anatomy Education: Organization, Evolution, and Assessment of an Innovative Teaching Program in an
Undergraduate Medical School in The Netherlands,” Annals of Anatomy - Anatomischer Anzeiger, vol. 257, p. 152354, nov
2024, https://doi.org/10.1016/j.aanat.2024.152354.
[18] V. R. Curran, X. Xu, M. Y. Aydin, and O. Meruvia-Pastor, “Use of Extended Reality in Medical Education: An Integrative
Review,” Medical Science Educator, vol. 33, no. 1, pp. 275–286, 2023, https://doi.org/10.1007/s40670-022-01698-4.
[19] S. Stefanie, S. Bodenstedt, F. v. Bechtolsheim, D. Rivoir, I. Funke, E. Goebel, A. Mitschick, R. Dachselt, and J. Weitz, The
Tactile Internet: Surgical assistance and training. Wiley Online Library, 2021.
[20] M. Takeuchi, N. Hayashi, H. Hamada, N. Matsumura, H. Nishijo, and S. Endo, “A new training method to improve deep
microsurgical skills using a mannequin head,” Microsurgery, vol. 28, no. 3, pp. 168–170, jan 2008, https://doi.org/10.1002/
micr.20473.
[21] P. Dhar, T. Rocks, R. M. Samarasinghe, G. Stephenson, and C. Smith, “Augmented reality in medical education : students ’
experiences and learning outcomes,” Medical Education Online, vol. 26, no. 1, 2021, https://doi.org/10.1080/10872981.2021.
1953953.
[22] A. Zargaran, M. A. Turki, J. Bhaskar, H. Victor, M. Spiers, D. Zargaran, A. Zargaran, M. A. Turki, J. Bhaskar, H. Victor,
J. Bhaskar, H. Victor, M. Spiers, and D. Zargaran, “The Role of Technology in Anatomy Teaching : Striking the Right Balance
The Role of Technology in Anatomy Teaching : Striking the Right Balance,” vol. 11, pp. 259–266, March, 2020, https://doi.
org/10.2147/AMEP.S240150.
[23] R.Wahyuningtyas, E. M. Kurniawati, B. Utomo, G. Hardianto, and H. Paraton, “Obstetrics and gynecology residents ’ satisfaction
and self- confidence after an anal sphincter injury simulation-based workshop in Indonesia : a pre- and post-intervention
comparison study,” vol. 19, pp. 1–9, February, 2022, https://doi.org/10.3352/jeehp.2022.19.4.
[24] D. D. Syamsuri, B. A. Tjokroprawiro, and E. M. Kurniawati, “Simulation-based training using a novel Surabaya hysterectomy
mannequin following video demonstration to improve abdominal hysterectomy skills of obstetrics and gynecology residents
during the COVID-19 pandemic in Indonesia : a pre- and post-intervention,” vol. 19, pp. 1–9, May, 2022, https://doi.org/10.
3352/jeehp.2022.19.11.
25] M. Marko-Holguin, S. L. Cordel, B. W. Van Voorhees, J. Fogel, E. Sykes, M. Fitzgibbon, and A. E. Glassgow, “A Two-
Way Interactive Text Messaging Application for Low-Income Patients with Chronic Medical Conditions: Design-Thinking
Development Approach,” JMIR mHealth and uHealth, vol. 7, no. 5, 2019, https://doi.org/10.2196/11833.
[26] M. Lohakan and C. Seetao, “Large-scale experiment in STEM education for high school students using artificial intelligence kit
based on computer vision and Python.” Heliyon, vol. 10, no. 10, p. e31366, may 2024, https://doi.org/10.1016/j.heliyon.2024.
e31366.
[27] N. Wickramasinghe, B. R. Thompson, and J. Xiao, “The Opportunities and Challenges of Digital Anatomy for Medical Sciences:
Narrative Review,” JMIR Med Educ, vol. 8, no. 2, p. e34687, 2022, https://doi.org/10.2196/34687.
[28] D. Henssen, J. Karstens, G. De Jong, J. D. Duits, L. Boer, M. Brink, T. Maal, and L. Peters-Bax, “Implementing 3D printing
and extended reality in anatomy education: Organization, evolution, and assessment of an innovative teaching program in an
undergraduate medical school in the Netherlands,” Annals of Anatomy - Anatomischer Anzeiger, vol. 257, p. 152354, January,
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Djoko Kuswanto, Athirah Hersyadea Alifah Putri, Ellya Zulaikha, Tedy Apriawan, Yuri Pamungkas, Evi Triandini, Nadya Paramitha Jafari, Thassaporn Chusak

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
Similar Articles
- Melati Rosanensi, Improving E-Commerce Effectiveness Using Augmented Reality , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Inna Novianty, Walidatush Sholihah, Yudawan Aditama, Aplikasi Virtual Reality Atom Kimia di Seamolec , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Fitria Santika, Nurul Azmi Gumanti, Leni Herfiyanti, Candra Mecca Sufyana, Outpatient Medical E-Resume in Support INA-CBGs Claims for Covid-19 Patients at Hospital , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Amir Ali, Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Dela Ananda Setyarini, Agnes Ayu Maharani Dyah Gayatri, Christian Sri Kusuma Aditya, Didih Rizki Chandranegara, Stroke Prediction with Enhanced Gradient Boosting Classifier and Strategic Hyperparameter , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Ahmad Zein Al Wafi, Febry Putra Rochim, Veda Bezaleel, Investigating Liver Disease Machine Learning Prediction Performancethrough Various Feature Selection Methods , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Imamah Imamah, Akhmad Siddiqi, Penerapan Teorema Bayes untuk Mendiagnosa Penyakit Telinga Hidung Tenggorokan (THT) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Fiby Nur Afiana, Pungkas Subarkah, A. Kholil Hidayat, Analisis Perbandingan Metode TAM dan Metode UTAUT 2 dalam Mengukur Kesuksesan Penerapan SIMRS pada Rumah Sakit Wijaya Kusuma DKT Purwokerto , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Radimas Putra Muhammad Davi Labib, Sirojul Hadi, Parama Diptya Widayaka, Low Cost System for Face Mask Detection Based Haar Cascade Classifier Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Anthony Anggrawan, Mayadi Mayadi, Application of KNN Machine Learning and Fuzzy C-Means to Diagnose Diabetes , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Evi Triandini, I Gede Suardika, I Ketut Putu Suniantara, Database Click Stream of E-commerce Functional , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)