Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo
DOI:
https://doi.org/10.30812/matrik.v19i1.529Keywords:
K-Means clustering, SIMR, Data Mining, ITAbstract
The use of information management systems that are owned by hospitals is still limited to being used only for the operation of daily patient service transactions and making reports only. The use of SIMRS is not optimal, it should pile the data stored in the database server can be used to generate new information if we dig deeper with the IT approach. This study uses data mining techniques with K-Means clustering method to cluster the patient's medical record data. The results of this study produce column 4 clusters consisting of districts, diagnoses of diseases, age and sex.The results of this study produce column 4 clusters consisting of districts, diagnoses of diseases, age and sex. Cluster 1 produced many patients consisting of 79(15%) female patients, Cluster 2 produced many patients consisting of 214(50%) male patients. Likewise Cluster 3 produced 89(17%) female patients. people and cluster 4 produced many patients consisting of 152(28%) female patients.The grouping of patient medical record data produces new information about the pattern of grouping of disease spread in each district based on the patient's medical record data from Anwar Medika Hospital as much as 534 data with a completion time of 0.06 seconds
Downloads
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Paska Marto Hasugian, Devy Mathelinea, Siska Simamora, Pandi Barita Nauli Simangunsong, Comparative Evaluation of Data Clustering Accuracy through Integration of Dimensionality Reduction and Distance Metric , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Anas Syaifudin, Purwanto Purwanto, Heribertus Himawan, M. Arief Soeleman, Customer Segmentation with RFM Model using Fuzzy C-Means and Genetic Programming , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Christofer Satria, Peter Wijaya Sugijanto, Anthony Anggrawan, I Nyoman Yoga Sumadewa, Aprilia Dwi Dayani, Rini Anggriani, Multi-Algorithm Approach to Enhancing Social Assistance Efficiency Through Accurate Poverty Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Solikhun Solikhun, Lise Pujiastuti, Mochamad Wahyudi, Enhancing Lung Cancer Prediction Accuracy UsingQuantum-Enhanced K-Medoids with Manhattan Distance , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Supangat Supangat, Mohd Zainuri Bin Saringat, Mochamad Yovi Fatchur Rochman, Predicting Handling Covid-19 Opinion using Naive Bayes and TF-IDF for Polarity Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Yully Sofyah Waode, Anang Kurnia, Yenni Angraini, K-Means Optimization Algorithm to Improve Cluster Quality on Sparse Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Hadi Santoso, Hilyah Magdalena, Helna Wardhana, Aplikasi Dynamic Cluster pada K-Means BerbasisWeb untuk Klasifikasi Data Industri Rumahan , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Donny Kurniawan, Anthony Anggrawan, Hairani Hairani, Graduation Prediction System on Students Using C4.5 Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Deny Jollyta, Prihandoko Prihandoko, Dadang Priyanto, Alyauma Hajjah, Yulvia Nora Marlim, Comparison of Distance Measurements Based on k-Numbers and Its Influence to Clustering , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Ni Wayan Sumartini Saraswati, I Gusti Ayu Agung Diatri Indradewi, Recognize The Polarity of Hotel Reviews using Support Vector Machine , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
You may also start an advanced similarity search for this article.