Support Vector Machine Optimization for Diabetes Prediction UsingGrid Search Integrated with SHapley Additive exPlanations
DOI:
https://doi.org/10.30812/matrik.v25i1.5133Keywords:
Classification, Diabetes, Grid Search, Support Vector Machine , SHapley Additive exPlanationsAbstract
The high number of diabetes mellitus sufferers has become a global health issue, and a scientific approach is needed to produce accurate and efficient diagnoses, which can then support decision-making in providing solutions for its management. The goal of this research is to develop a machine learning model that can accurately, efficiently, and transparently diagnose diabetes mellitus for use in clinical practice. This research method involves using the Support Vector Machine (SVM) algorithm, optimized with the Grid Search technique, and evaluated interpretively using the SHapley Additive exPlanations (SHAP) method. This research uses a secondary dataset consisting of the parameters Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, Body Mass Index, DiabetesPedigree- Function, and Age. Data preprocessing was carried out by performing normalization using a standard scaler and dividing the data into training and testing sets. The results of this study show that the SVM model achieved an accuracy of 0.7532 with the optimal parameters C: 1, gamma: 0.01, and kernel: rbf. Using SHAP, the analysis shows that the parameters Glucose, Body Mass Index, and Age have a significant impact on the results of diabetes classification. The main finding of this study is that Support
Vector Machine optimization with SHapley Additive exPlanations can deliver excellent performance in diabetes prediction while also enhancing model transparency. The study’s implications suggest that the results can serve as a foundation for developing a medical diagnosis system that is straightforward, accurate, and easy to understand for diabetes mellitus.
Downloads
References
[1] B. Hidayat, R. V. Ramadani, A. Rudijanto, P. Soewondo, K. Suastika, and J. Y. Siu Ng, “Direct Medical Cost of Type 2 Diabetes
Mellitus and Its Associated Complications in Indonesia,” Value in Health Regional Issues, vol. 28, pp. 82–89, March,2022,https://doi.org/10.1016/j.vhri.2021.04.006.
[2] I. B. Sya’idah, S. Surono, and G. KhangWen, “DynamicWeighted Particle Swarm Optimization - Support Vector Machine Optimization
in Recursive Feature Elimination Feature Selection,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa
Komputer, vol. 23, no. 3, pp. 627–640, 2024, https://doi.org/10.30812/matrik.v23i3.3963.
[3] R. Guido, S. Ferrisi, D. Lofaro, and D. Conforti, “An Overview on the Advancements of Support Vector Machine Models in
Healthcare Applications: A Review,” vol. 15, no. 4, pp. 1–36, April, 2024, https://doi.org/10.3390/info15040235.
[4] Q. Wang, “Support Vector Machine Algorithm in Machine Learning,” in 2022 IEEE International Conference on Artificial
Intelligence and Computer Applications (ICAICA), August, 2022, pp. 750–756, https://doi.org/10.1109/ICAICA54878.2022.
9844516.
[5] N.W. S. Saraswati and I. G. A. A. Diatri Indradewi, “Recognize The Polarity of Hotel Reviews using Support Vector Machine,”
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 22, no. 1, pp. 25–36, 2022, https://doi.org/10.
30812/matrik.v22i1.1848.
[6] G. Anyanwu, C. Nwakanma, J. M. Lee, and D.-S. Kim, “Optimization of RBF-SVM Kernel using Grid Search Algorithm for
Detecting DDoS Attack in SDN-Based VANET,” IEEE Internet of Things Journal, vol. 10, no. 10, pp. 8477–8490, may 2023,
https://doi.org/10.1109/JIOT.2022.3199712.
[7] C.-A. Tsai and Y.-J. Chang, “Efficient Selection of Gaussian Kernel SVM Parameters for Imbalanced Data,” pp. 1–13, February,
2023, https://doi.org/10.3390/genes14030583.
[8] I. S. Al-Mejibli, J. K. Alwan, and D. H. Abd, “The effect of gamma value on support vector machine performance with
different kernels,” International Journal of Electrical and Computer Engineering, vol. 10, no. 5, pp. 5497–5506, 2020, https:
//doi.org/10.11591/IJECE.V10I5.PP5497-5506.
[9] Y. Zhao, W. Zhang, and X. Liu, “Grid search with a weighted error function: Hyper-parameter optimization for financial time
series forecasting,” Applied Soft Computing, vol. 154, p. 111362, March, 2024, https://doi.org/10.1016/j.asoc.2024.111362.
[10] D. Belete and M. D H, “Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test
results,” International Journal of Computers and Applications, vol. 44, pp. 1–12, sep 2021, https://doi.org/10.1080/1206212X.
2021.1974663.
[11] D. Anggreani, Hamdani, and Nurmisba, “Grid Search Hyperparameter Analysis in Optimizing The Decision Tree Method for
Diabetes Prediction,” Indonesian Journal of Data and Science, vol. 5, pp. 190–197, dec 2024, https://doi.org/10.56705/ijodas.
v5i3.190.
[12] R. Rofik, R. A. Hakim, J. Unjung, B. Prasetiyo, and M. A. Muslim, “Optimization of svm and gradient boosting models using
gridsearchcv in detecting fake job postings,” MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 23,
no. 2, pp. 419–430, 2024, https://doi.org/10.30812/matrik.v23i2.3566.
[13] F. Yunita Sari, M. S. Kuntari, H. Khaulasari, andW. Ari Yati, “Comparison of Support Vector Machine Performance with Oversampling
and Outlier Handling in Diabetic Disease Detection Classification,” MATRIK : Jurnal Manajemen, Teknik Informatika
dan Rekayasa Komputer, vol. 22, no. 3, pp. 539–552, 2023, https://doi.org/10.30812/matrik.v22i3.2979.
[14] S. Amutha and J. Raja Sekar, “An Optimized Framework for Diabetes Mellitus Diagnosis Using Grid Search Based Support
Vector Machine BT - Computer, Communication, and Signal Processing. AI, Knowledge Engineering and IoT for Smart Systems,”
pp. 153–167, 2023.
[15] M. Rakrak, “Exploring Variability in Data: The Role of Range, Variance, and Standard Deviation,” International Journal of
Multidisciplinary Research and Analysis, vol. 08, no. 03, pp. 1327–1331, mar 2025, https://doi.org/10.47191/ijmra/v8-i03-47.
[16] D. Fryer, I. Str¨umke, and H. Nguyen, “Shapley Values for Feature Selection: The Good, the Bad, and the Axioms,” IEEE
Access, vol. 9, pp. 144 352–144 360, 2021, https://doi.org/10.1109/ACCESS.2021.3119110.
[17] S. Ahmed, M. S. Kaiser, M. Hossain, and K. Andersson, “A Comparative Analysis of LIME and SHAP Interpreters with
Explainable ML-Based Diabetes Predictions,” IEEE Access, vol. PP, p. 1, jan 2024, https://doi.org/10.1109/ACCESS.2024.
3422319.
[18] M. Islam, H. R. Rifat, M. S. Shahid, A. Akhter, M. A. Uddin, and K. M. Mohi Uddin, “Explainable Machine Learning for
Efficient Diabetes Prediction Using Hyperparameter Tuning, SHAP Analysis, Partial Dependency, and LIME,” Engineering
Reports, vol. 7, dec 2024, https://doi.org/10.1002/eng2.13080.
[19] S. U. Hassan, S. J. Abdulkadir, M. S. M. Zahid, and S. M. Al-Selwi, “Local interpretable model-agnostic explanation approach
for medical imaging analysis: A systematic literature review,” Computers in Biology and Medicine, vol. 185, p. 109569, 2025,
https://doi.org/10.1016/j.compbiomed.2024.109569.
[20] S. I. Oktora, D. Matualage, K. A. Notodiputro, and B. Sartono, “Data-Driven Insights Into Underdeveloped Regencies: SHAPBased
Explainable Artificial Intelligence Approach,” International Journal of Artificial Intelligence Research; Vol 9, No 1
(2025): June, vol. 9, pp. 1–13, 2025, https://doi.org/10.29099/ijair.v9i1.1399.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 M Safii, Husain Husain, Khairan Marzuki

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
Similar Articles
- Firda Yunita Sari, Maharani sukma Kuntari, Hani Khaulasari, Winda Ari Yati, Comparison of Support Vector Machine Performance with Oversampling and Outlier Handling in Diabetic Disease Detection Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Annisa Nurul Puteri, Suryadi Syamsu, Topan Leoni Putra, Andita Dani Achmad, Support Vector Machine for Predicting Candlestick Chart Movement on Foreign Exchange , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Taufik Hidayat, Mohammad Ridwan, Muhamad Fajrul Iqbal, Sukisno Sukisno, Robby Rizky, William Eric Manongga, Determining Toddler's Nutritional Status with Machine Learning Classification Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Budi Sumanto, Salima Nurrahma, Comparison of Random Forest Support Vector Machine and Passive Aggressive Models on E-nose-Based Aromatic Rice Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Miftahuddin Fahmi, Anton Yudhana, Sunardi Sunardi, Image Processing Using Morphology on Support Vector Machine Classification Model for Waste Image , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Irma Binti Sya'idah, Sugiyarto Surono, Goh Khang Wen, DynamicWeighted Particle Swarm Optimization - Support Vector Machine Optimization in Recursive Feature Elimination Feature Selection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Wahyu Styo Pratama, Didik Dwi Prasetya, Triyanna Widyaningtyas, Muhammad Zaki Wiryawan, Lalu Ganda Rady Putra, Tsukasa Hirashima, Performance Evaluation of Artificial Intelligence Models for Classification in Concept Map Quality Assessment , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Reo Wicaksono, Didik Dwi Prasetya, Ilham Ari Elbaith Zaeni, Nadindra Dwi Ariyanta, Tsukasa Hirashima, Machine Learning for Open-ended Concept Map Proposition Assessment: Impact of Length on Accuracy , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Ni Wayan Sumartini Saraswati, I Gusti Ayu Agung Diatri Indradewi, Recognize The Polarity of Hotel Reviews using Support Vector Machine , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Ahmad Zein Al Wafi, Febry Putra Rochim, Veda Bezaleel, Investigating Liver Disease Machine Learning Prediction Performancethrough Various Feature Selection Methods , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Khairul Imtihan, Muhamad Rodi, Maulana Ashari, Mohamad Taufan Asri Zaen, Khairan Marzuki, Audit Tata Kelola Teknologi Informasi Menggunakan Framework Cobit 4.1 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Dyah Susilowati, Hairani Hairani, Indah Puji Lestari, Khairan Marzuki, Lalu Zazuli Azhar Mardedi, Segmentasi Lokasi Promosi Penerimaan Mahasiswa Baru Menggunakan Metode RFM dan K-Means Clustering , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Helna Wardhana, I Made Yadi Dharma, Khairan Marzuki, Ibjan Syarif Hidayatullah, Implementation of Neural Machine Translation in Translating from Indonesian to Sasak Language , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- M Safii, Rika Setiana, Population Prediction Using Multiple Regression and Geometry Models Based on Demographic Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- I Putu Hariyadi, Khairan Marzuki, Implementation of Configuration Management Virtual Private Server Using Ansible , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Hengki Tamando Sihotang, Fristi Riandari, Pilisman Buulolo, Husain Husain, Sistem Pakar untuk Identifikasi Kandungan Formalin dan Boraks pada Makanan dengan Menggunakan Metode Certainty Factor , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Jusmita Weriza, Ismail Husein, Noranizamardia Noranizamardia, M Fakhariza, Khairan Marzuki, Development of OnlineWeb-Based New Student Graduation Application in Junior High School , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Fristi Riandari, Hengki Tamando Sihotang, Husain Husain, Forecasting the Number of Students in Multiple Linear Regressions , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Husain Husain, I Putu Hariyadi, Kurniadin Abd Latif, Galih Tri Aditya, Implementation of Port Knocking with Telegram Notifications to Protect Against Scanner Vulnerabilities , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Lalu Zazuli Azhar Mardedi, Khairan Marzuki, Rancang Bangun Jaringan Komputer LAN Berdasarkan Perbandingan Kinerja Routing Protokol EIGRP dan Routing Protokol OSPF , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
.png)











