Enhancing Lung Cancer Prediction Accuracy UsingQuantum-Enhanced K-Medoids with Manhattan Distance
DOI:
https://doi.org/10.30812/matrik.v24i3.4190Keywords:
Clustering, data mining, K-Medoids, Manhattan Distance, Quantum Bit, Quantum ComputingAbstract
Lung cancer is a leading cause of cancer-related deaths worldwide, and early detection plays a crucial
role in improving treatment outcomes. This study proposes an enhancement of the K-Medoids clustering
method by integrating a quantum computing approach using Manhattan distance to improve
prediction accuracy for lung cancer diagnosis. The research was conducted using a publicly available
lung cancer dataset consisting of 309 patient records with 14 diagnostic attributes. Comparative experiments
were carried out between the classical K-Medoids and the quantum-enhanced K-Medoids, with
performance evaluated based on clustering accuracy, precision, recall, and F1-score. The results show
that the quantum-based method has the same accuracy as the classical method, namely 88%. This
suggests that quantum-based clustering can match the accuracy of classical methods after adequate
training, although consistency and parameter stability remain areas for further refinement. Further
research is recommended to test the model on larger datasets and to explore real-world deployment in
clinical decision support systems.
Downloads
References
[1] Y.-M. Li, H.-L. Liu, S.-J. Pan, S.-J. Qin, F. Gao, D.-X. Sun, and Q.-Y. Wen, “Quantum k -medoids algorithm using parallel
amplitude estimation,” Physical Review A, vol. 107, no. 2, p. 022421, Feb. 2023, https://doi.org/10.1103/PhysRevA.107.022421.
[2] N. Gao, D. Li, A. Mishra, J. Yan, K. Simonov, and G. Chiribella, “Measuring Incompatibility and Clustering Quantum Ob-servables with a Quantum Switch,” Physical Review Letters, vol. 130, no. 17, p. 170201, Apr. 2023, https://doi.org/10.1103/
PhysRevLett.130.170201.
[3] K. Hulliyah and S. Solikhun, “Q-Madaline: Madaline Based On Qubit,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi),
vol. 7, no. 5, pp. 1003–1008, Aug. 2023, https://doi.org/10.29207/resti.v7i5.5080.
[4] J. L. Pereira, L. Banchi, and S. Pirandola, “Quantum-Enhanced Cluster Detection in Physical Images,” Physical Review Applied,
vol. 19, no. 5, p. 054031, May 2023, https://doi.org/10.1103/PhysRevApplied.19.054031.
[5] N. Piatkowski, T. Gerlach, R. Hugues, R. Sifa, C. Bauckhage, and F. Barbaresco, “Towards Bundle Adjustment for Satellite
Imaging via Quantum Machine Learning,” in 2022 25th International Conference on Information Fusion (FUSION).
Link¨oping, Sweden: IEEE, Jul. 2022, pp. 1–8, https://doi.org/10.23919/FUSION49751.2022.9841388.
[6] L. Zahrotun, U. Linarti, B. H. T. Suandi As, H. Kurnia, and L. Y. Sabila, “Comparison of K-Medoids Method and Analytical
Hierarchy Clustering on Students’ Data Grouping,” JOIV : International Journal on Informatics Visualization, vol. 7, no. 2, p.
446, May 2023, https://doi.org/10.30630/joiv.7.2.1204.
[7] S. Al-Otaibi, V. Cherappa, T. Thangarajan, R. Shanmugam, P. Ananth, and S. Arulswamy, “Hybrid K-Medoids with Energy-
Efficient Sunflower Optimization Algorithm for Wireless Sensor Networks,” Sustainability, vol. 15, no. 7, p. 5759, Mar. 2023,
https://doi.org/10.3390/su15075759.
[8] F. Faisal, L. A. G. Giopani, M. F. Fitriah, Z. C. D. Dwynne, S. S. H. Helma, and M. Mustakim, “Perbandingan Algoritma
K-Means dan K-Medoids Untuk Pengelompokan Suhu di Provinsi Riau: Comparison of K-Means and K-Medoids Algorithms
for Temperature Grouping in Riau Province,” Indonesian Journal of Informatic Research and Software Engineering (IJIRSE),
vol. 2, no. 2, pp. 128–134, Sep. 2022, https://doi.org/10.57152/ijirse.v2i2.434.
[9] S. Samudi, S.Widodo, and H. Brawijaya, “The K-Medoids Clustering Method for Learning Applications during the COVID-19
Pandemic,” SinkrOn, vol. 5, no. 1, p. 116, Oct. 2020, https://doi.org/10.33395/sinkron.v5i1.10649.
[10] Z.Wu, L. Jin, J. Zhao, L. Jing, and L. Chen, “Research on Segmenting E-Commerce Customer through an Improved K-Medoids
Clustering Algorithm,” Computational Intelligence and Neuroscience, vol. 2022, pp. 1–10, Jun. 2022, https://doi.org/10.1155/
2022/9930613.
[11] Mustakim, M. Z. Fauzi, Mustafa, A. Abdullah, and Rohayati, “Clustering of Public Opinion on Natural Disasters in Indonesia
Using DBSCAN and K-Medoids Algorithms,” Journal of Physics: Conference Series, vol. 1783, no. 1, p. 012016, Feb. 2021,
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Solikhun Solikhun, Lise Pujiastuti, Mochamad Wahyudi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
Similar Articles
- Surahmat Surahmat, Alfred Tenggono, Analisis Perbandingan Kinerja Layanan Infrastructure As A Service Cloud Computing Pada Proxmox dan Xenserver , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Annisa’ul Mubarokah, Rita Ambarwati, Dedy Dedy, Mashhura Toirхonovna Alimova, Unsafe Conditions Identification Using Social Networks in Power Plant Safety Reports , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Ahmad Fatoni Dwi Putra, Muhamad Nizam Azmi, Heri Wijayanto, Satria Utama, I Gede Putu Wirarama Wedashwara Wirawan, Optimizing Rain Prediction Model Using Random Forest and Grid Search Cross-Validation for Agriculture Sector , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Jelita Asian, Dimas Erlangga, Media Ayu, Data Exfiltration Anomaly Detection on Enterprise Networks using Deep Packet Inspection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Angga Rahagiyanto, Identifikasi Ekstraksi Fitur untuk Gerakan Tangan dalam Bahasa Isyarat (SIBI) Menggunakan Sensor MYO Armband , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Rizky Hafizh Jatmiko, Yoga Pristyanto, Investigating The Effectiveness of Various Convolutional Neural Network Model Architectures for Skin Cancer Melanoma Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Rizky Afrinanda, Lusiana Efrizoni, Wirta Agustin, Rahmiati Rahmiati, Hybrid Model for Sentiment Analysis of Bitcoin Prices using Deep Learning Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Rizki Rino Pratama, Analisis Model Machine Learning Terhadap Pengenalan Aktifitas Manusia , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Helna Wardhana, I Made Yadi Dharma, Khairan Marzuki, Ibjan Syarif Hidayatullah, Implementation of Neural Machine Translation in Translating from Indonesian to Sasak Language , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Radimas Putra Muhammad Davi Labib, Sirojul Hadi, Parama Diptya Widayaka, Low Cost System for Face Mask Detection Based Haar Cascade Classifier Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Relita Buaton, Solikhun Solikhun, Application of Numerical Measure Variations in K-Means Clustering for Grouping Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Firmansyah Firmansyah, Mochamad Wahyudi, Analisis Performa Access Control List Menggunakan Metode Firewall Policy Base , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Mochamad Wahyudi, Firmansyah Firmansyah, Analisis Performa Open Shortest Path First Load Balancing dengan Metode Cost Manipulation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
.png)











