Analisis Model Machine Learning Terhadap Pengenalan Aktifitas Manusia
DOI:
https://doi.org/10.30812/matrik.v19i2.688Keywords:
Machine Learning, Linear Regression, SVM, Decision Tree, Linear SVCAbstract
Aktivitas-aktivitas manusia diklasifikasikan dengan menggunakan sensor responsif dari gerakan manusia yang disebut pengguna. Karya ilmiah ini berfokus pada penggunaan model klasifikasi pendekatan pembelajaran mesin yang berbeda. Dalam penelitian ini, data yang digunakan diambil dari open source yang diklasifikasikan untuk mengenali aktivitas manusia di mana percobaannya telah dilakukan dengan sekelompok 30 sukarelawan dalam berbagai kelompok usia. Setiap orang melakukan enam aktivitas mengenakan smartphone di bagian pinggang. Dengan menggunakan accelerometer dan gyroscope yang tertanam, ditangkap akselerasi linear 3-aksial dan kecepatan sudut 3-aksial pada kecepatan konstan 50Hz. Dataset yang diperoleh telah dipartisi secara acak menjadi dua set, di mana 70% sukarelawan dipilih untuk menghasilkan data training dan 30% untuk data uji. Hasil pendekatan yang digunakan dibandingkan dalam hal efisiensi akurasi dan presisi. Model yang digunakan adalah regresi logistik, linear SVC, rbf SVM classifier, decision tree, dan random forest.
Downloads
References
[2] J. H. Friedman, “Data Mining and Statistics: What’s the connection?,†Statistics (Ber)., 1997.
[3] S. Russell dan P. Norvig, Artificial Intelligence A Modern Approach Third Edition. 2010.
[4] M. Mohri, A. Rostamizadeh, dan A. Talwalkar, Foundations of Machine Learning (Adaptive Computation and Machine Learning series). 2012.
[5] T. Mitchell, Machine Learning. McGraw Hill, 1997.
[6] V. Roman, “Unsupervised Machine Learning: Clustering Analysis -- Towards Data Science,†Towar. Data Sci., 2019.
[7] D. A. Freedman, Statistical models: Theory and practice. 2009.
[8] H. J. Scudder, “Probability of Error of Some Adaptive Pattern-Recognition Machines,†IEEE Transactions on Information Theory. 1965, doi: 10.1109/TIT.1965.1053799.
[9] H. L. Seal, “Studies in the History of Probability and Statistics. XV: The Historical Development of the Gauss Linear Model,†Biometrika, 1967, doi: 10.2307/2333849.
[10] C. Cortes dan V. Vapnik, “Support-Vector Networks,†Mach. Learn., 1995, doi: 10.1023/A:1022627411411.
[11] L. Rokach dan O. Maimon, Data mining with decision trees : theroy and applications. 2008.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Wahyu Styo Pratama, Didik Dwi Prasetya, Triyanna Widyaningtyas, Muhammad Zaki Wiryawan, Lalu Ganda Rady Putra, Tsukasa Hirashima, Performance Evaluation of Artificial Intelligence Models for Classification in Concept Map Quality Assessment , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Lusiana Efrizoni, Sarjon Defit, Muhammad Tajuddin, Anthony Anggrawan, Komparasi Ekstraksi Fitur dalam Klasifikasi Teks Multilabel Menggunakan Algoritma Machine Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Sucipto Sucipto, Didik Dwi Prasetya, Triyanna Widiyaningtyas, Educational Data Mining: Multiple Choice Question Classification in Vocational School , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Muhammad Alkaff, Muhammad Afrizal Miqdad, Muhammad Fachrurrazi, Muhammad Nur Abdi, Ahmad Zainul Abidin, Raisa Amalia, Hate Speech Detection for Banjarese Languages on Instagram Using Machine Learning Methods , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Ahmad Zein Al Wafi, Febry Putra Rochim, Veda Bezaleel, Investigating Liver Disease Machine Learning Prediction Performancethrough Various Feature Selection Methods , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Pardomuan Robinson Sihombing, Istiqomatul Fajriyah Yuliati, Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Annisa Nurul Puteri, Suryadi Syamsu, Topan Leoni Putra, Andita Dani Achmad, Support Vector Machine for Predicting Candlestick Chart Movement on Foreign Exchange , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Mamluatul Hani'ah, Moch Zawaruddin Abdullah, Wilda Imama Sabilla, Syafaat Akbar, Dikky Rahmad Shafara, Google Trends and Technical Indicator based Machine Learning for Stock Market Prediction , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Taufik Hidayat, Mohammad Ridwan, Muhamad Fajrul Iqbal, Sukisno Sukisno, Robby Rizky, William Eric Manongga, Determining Toddler's Nutritional Status with Machine Learning Classification Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Firda Yunita Sari, Maharani sukma Kuntari, Hani Khaulasari, Winda Ari Yati, Comparison of Support Vector Machine Performance with Oversampling and Outlier Handling in Diabetic Disease Detection Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
You may also start an advanced similarity search for this article.