Perbandingan Metode Backpropagation dan Learning Vector Quantization (LVQ) Dalam Menggali Potensi Mahasiswa Baru di STMIK PalComTech
DOI:
https://doi.org/10.30812/matrik.v18i2.387Keywords:
Backpropagation, Artificial Neural Network, Learning Vector QuanitzationAbstract
The Research aimst to compare backpropagation and Learning Vector Quantization (LVQ) methods in exploring the potential of new students at STMIK PalComTech. Comparisons in this study involve four input variables used which consist of four basic subjects of informatics engineering and information systems (math, basic programming, computer networks and management bases) which then make informatics techniques and information systems as outputs, to get the accuracy level high in this study, the researchers used several variations of parameters which eventually produced the best accuracy of the two methods. From 120 data tested using variations in test data and training data which are then processed using variations in the learning rate parameters and epochs. From the test results obtained the level of accuracy of pattern recognition in the backpropagation method is 99.17% with a learning rate variation of 0.1 and epoch 100, the learning vector quantization method has an accuracy rate of 96.67% with a variation of learning rate 1 and epoch 20 From the results of the comparison the Backpropagation method is superior in terms of accuracy so that it becomes the right method to use in exploring the potential of new students at STMIK PalComTech.
Downloads
References
[2] a. Nurkhozin, M. I. Irawan, and I. Mukhlash, “Klasifikasi Penyakit Diabetes Mellitus Menggunakan Jaringan Syaraf Tiruan Backpropagation Dan Learning,†Pros. Semin. Nas. Penelitian, Pendidik. dan Penerapan MIPA, no. 7, pp. 1–8, 2011.
[3] M. F. Q. Azizi, “Perbandingan antara Metode Backpropagation dengan Metode Learning Vector Quantization (LVQ) pada Pengenalan Citra Barcode.†Universitas Negeri Semarang, 2013.
[4] A. Prabowo, E. A. Sarwoko, and D. E. Riyanto, “Learning Vector Quantization Pada Pengenalan Pola Tandatangan,†J. SAINS DAN Mat., vol. 14, no. 4, pp. 147–153, 2006.
[5] R. Meliawati, O. Soesanto, and D. Kartini, “Penerapan Metode Learning Vector Quantization (LVQ) Pada Prediksi Jurusan Di SMA PGRI 1 Banjarbaru,†KLIK-KUMPULAN J. ILMU Komput., vol. 3, no. 1, pp. 11–20, 2016.
[6] D. Kartini, R. A. Nugroho, and M. R. Faisal, “Klasifikasi Kelulusan Mahasiswa Menggunakan Algoritma Learning Vector Quantization,†POSITIF J. Sist. dan Teknol. Inf., vol. 3, no. 2, pp. 93–98, 2017.
[7] D. A. Nugraha and W. Retnowati, “Sistem Pendukung Keputusan Penjurusan di SMA Menggunakan Metode Neural Network Backpropagation (Studi Kasus SMA Islam Kepanjen Malang),†Bimasakti.
[8] A. Jumarwanto, R. Hartanto, and D. Prastiyanto, “Aplikasi jaringan saraf tiruan backpropagation untuk memprediksi penyakit THT di Rumah Sakit Mardi Rahayu Kudus,†J. Tek. Elektro, vol. 1, no. 1, p. 11, 2009.
[9] S. Kusumadewi, “Artificial intelligence (teknik dan aplikasinya),†Yogyakarta Graha Ilmu, vol. 5, 2003.
[10] J. J. Siang, “Jaringan syaraf tiruan dan pemrogramannya menggunakan Matlab,†Penerbit Andi, Yogyakarta, 2005. [11] D. Puspitaningrum, “Pengantar Jaringan Syaraf Tiruan,†2006.
[12] L. V Fausett, Fundamentals of neural networks: architectures, algorithms, and applications, vol. 3. prentice-Hall Englewood Cliffs, 1994.
[13] Y. A. Lesnussa, S. Latuconsina, and E. R. Persulessy, “Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA (Studi kasus: Prediksi Prestasi Siswa SMAN 4 Ambon),†J. Mat. Integr. ISSN, vol. 1412, p. 6184, 2015.
[14] Y. A. Lesnussa, L. J. Sinay, and M. R. Idah, “Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Penyebaran Penyakit Demam Berdarah Dengue (DBD) di Kota Ambon,†J. Mat. Integr., vol. 13, no. 2, pp. 63–72, 2017.
[15] A. Hasim, “Prakiraan Beban Listrik Kota Pontianak Dengan Jaringan Syaraf Tiruan (Artificial Neural Network).†IPB, Bogor (Tesis S2), 2008.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Melinda Melinda, Zharifah Muthiah, Fitri Arnia, Elizar Elizar, Muhammad Irhmasyah, Image Data Acquisition and Classification of Vannamei Shrimp Cultivation Results Based on Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Aris Tjahyanto, Faisal Johan Atletiko, Peningkatan Kinerja Pengklasifikasi Objek Bawah Laut dengan Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Agung Teguh Wibowo Almais, Cahyo Crysdian, Khadijah Fahmi Hayati Holle, Akbar Roihan, Smart Assessment menggunakan Backpropagation Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Didih Rizki Chandranegara, Faras Haidar Pratama, Sidiq Fajrianur, Moch Rizky Eka Putra, Zamah Sari, Automated Detection of Breast Cancer Histopathology Image Using Convolutional Neural Network and Transfer Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Helna Wardhana, I Made Yadi Dharma, Khairan Marzuki, Ibjan Syarif Hidayatullah, Implementation of Neural Machine Translation in Translating from Indonesian to Sasak Language , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Bambang Krismono Triwijoyo, Model Fast Tansfer Learning pada Jaringan Syaraf Tiruan Konvolusional untuk Klasifikasi Gender Berdasarkan Citra Wajah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Fitra Ahya Mubarok, Mohammad Reza Faisal, Dwi Kartini, Dodon Turianto Nugrahadi, Triando Hamonangan Saragih, Gender Classification of Twitter Users Using Convolutional Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Tjut Awaliyah Zuraiyah, Sufiatul Maryana, Asep Kohar, Automatic Door Access Model Based on Face Recognition using Convolutional Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Annisa Nurul Puteri, Suryadi Syamsu, Topan Leoni Putra, Andita Dani Achmad, Support Vector Machine for Predicting Candlestick Chart Movement on Foreign Exchange , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
You may also start an advanced similarity search for this article.
.png)











