Model Fast Tansfer Learning pada Jaringan Syaraf Tiruan Konvolusional untuk Klasifikasi Gender Berdasarkan Citra Wajah
DOI:
https://doi.org/10.30812/matrik.v18i2.376Keywords:
gender classification, transfer learning, CNNAbstract
The face is a challenging object to be recognized and analyzed automatically by a computer in many interesting applications such as facial gender classification. The large visual variations of faces, such as occlusions, pose changes, and extreme lightings, impose great challenge for these tasks in real world applications. This paper explained the fast transfer learning representations through use of convolutional neural network (CNN) model for gender classification from face image. Transfer learning aims to provide a framework to utilize previously-acquired knowledge to solve new but similar problems much more quickly and effectively. The experimental results showed that the transfer learning method have faster and higher accuracy than CNN network without transfer learning.
Downloads
References
[2] Budiarto, J., & Qudsi, J. “Deteksi Citra Kendaraan Berbasis Web Menggunakan Javascript Framework Libraryâ€. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol.18 no.1, pp.125-133, 2018. https://doi.org/10.30812/matrik.v18i1.325
[3] Triwijoyo, B. K. “Segmentasi Citra Pembuluh Darah Retina Menggunakan Metode Deteksi Garis Multi Skalaâ€. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 15, pp.1, pp.13-19, 2015. https://doi.org/10.30812/matrik.v15i1.28
[4] Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., and Zhang, G. “Transfer learning using computational intelligence: a surveyâ€. Knowledge-Based Systems, no. 80, pp. 14-23, 2015. https://doi.org/10.1016/j.knosys.2015.01.010
[5] Fukushima K and Miyake S. “Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognitionâ€. In Competition and cooperation in neural nets pp. 267-285, 1982. https://doi.org/10.1007/978-3-642-46466-9_18
[6] LeCun Y, Boser B, Denker J.S, Henderson D, Howard R.E, Hubbard W, and Jackel L.D. “Backpropagation applied to handwritten zip code recognition. Neural computationâ€, 1989 https://doi.org/10.1162/neco.1989.1.4.541
[7] Stathakis D. “How many hidden layers and nodes?â€. International Journal of Remote Sensing, vol. 30, no.8, pp. 2133-2147, 2009 https://doi.org/10.1080/01431160802549278
[8] Cottrell, G.W., Metcalfe, J. “EMPATH: Face, emotion, and gender recognition using holonsâ€. In: Lippmann, R., Moody, J.E., Touretzky, D.S. (Eds.), Proc. Advances in Neural Information Processing Systems 3 (NIPS). Morgan Kaufmann, pp. 564–571, 1990 https://dl.acm.org/citation.cfm?id=2986843
[9] Golomb, B.A., Lawrence, D.T., Sejnowski, T.J. “SEXNET: A neural network identifies sex from human facesâ€. In: Lippmann, R., Moody, J.E., Touretzky, D.S. (Eds.), Proc. Advances in Neural Information Processing Systems 3 (NIPS). Morgan Kaufmann, pp. 572–579, 1990. https://dl.acm.org/citation.cfm?id=2986844
[10] Wiskott, L., Fellous, J.-M., Krüger, N., von der Malsburg, C., “Face recognition by elastic bunch graph matchingâ€. In: Sommer, G., Daniilidis, K., Pauli, J. (Eds.), 7th International Conference on Computer Analysis of Images and Patterns, CAIP’97, Kiel. Springer-Verlag, Heidelberg, pp. 456–463, 1997. https://doi.org/10.1007/3-540-63460-6_150
[11] Tamura, S., Kawai, H., Mitsumoto, H. “Male/female identification from 8 to 6 very low resolution face images by neural networkâ€. Pattern Recognition, vol. 29, no.2, pp. 331–335, 1996. https://doi.org/10.1016/0031-3203(95)00073-9 [12] Lyons, M., Budynek, J., Plante, A., Akamatsu, S. “Classifying facial attributes using a 2-d Gabor wavelet representation and discriminant analysisâ€. In: Proc. Internat. Conf. on Automatic Face and Gesture Recognition (FG’00), IEEE, Grenoble, France, pp. 202–207, 2000. https://doi.org/10.1109/AFGR.2000.840635
[13] Sun, Z., Bebis, G., Yuan, X., Louis, S.J., December. “Genetic feature subset selection for gender classification: A comparison studyâ€. In: Proc. IEEE Workshop on Applications of Computer Vision (WACV’02), pp. 165–170, 2002. https://doi.org/10.1109/ACV.2002.1182176
[14] Jain, A., Huang, J. “Integrating independent components and linear discriminant analysis for gender classification}. In: Proc. Internat. Conf. on Automatic Face and Gesture Recognition (FGR’04), pp. 159–163, 2004. https://doi.org/10.1109/AFGR.2004.1301524
[15] Costen, N., Brown, M., Akamatsu, S. “Sparse models for gender classificationâ€. In: Proc. Internat. Conf. on Automatic Face and Gesture Recognition (FGR’04), pp. 201–206, 2004. https://doi.org/10.1109/AFGR.2004.1301531
[16] Sun, N., Zheng, W., Sun, C., Zou, C., Zhao, L. “Gender classification based on boosting local binary patternâ€. In: Proc. 3rd Internat. Symposium on Neural Networks (ISNN’06), Chengdu, China, vol. 2, pp. 194–201, 2006. https://doi.org/10.1007/11760023_29
[17] Lian, H.-C., Lu, B.-L. “Multi-view gender classification using local binary patterns and support vector machinesâ€. In: Proc. 3rd Internat. Sympos. on Neural Networks (ISNN’06), Chengdu, China, vol. 2, pp. 202–209, 2006. https://doi.org/10.1007/11760023_30
[18] Baluja, S., Rowley, H.A. “Boosting sex identification performanceâ€. Internat. J. Comput. Vision vol. 71, no.1, pp.111–119, 2007. https://doi.org/10.1007/s11263-006-8910-9
[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks†in Advances in neural information processing systems, 2012, pp. 1097-1105, 2012. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networ
[20] Y. Wen, Z., Li, Y. Qiao, “Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognitionâ€, in IEEE Conference on Computer Vision and Pattern Recognition, 2016. http://openaccess.thecvf.com/content_cvpr_2016/html/Wen_Latent_Factor_Guided_CVPR_2016_paper.html
[21] F. Nian, L. Li, T. Li, “Robust gender classification on unconstrained face imagesâ€, in ACM International Conference on Internet Multimedia Computing and Service, 2015, pp. 77. https://dl.acm.org/citation.cfm?id=2808570
[22] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face atributes in the wildâ€, in IEEE International Conference on Computer Vision, 2015, pp. 3730-3738. http://openaccess.thecvf.com/content_iccv_2015/html/Liu_Deep_Learning_Face_ICCV_2015_paper.html
[23] R. Olga, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, F. Li, “Imagenet large scale visual recognition challengeâ€, International Journal of Computer Vision, 2015, vol. 115, no. 3, pp. 211-252. https://doi.org/10.1007/s11263-015-0816-y
[24] G. Levi, T. Hassner, “Age and Gender Classification Using Convolutional Neural Networkâ€, in IEEE Conference on Computer Vision and Pattern Recogni- tion Workshops, 2015, pp. 34-42. https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/html/Levi_Age_and_Gender_2015_CVPR_paper.html [25] Eidinger, E., Enbar, R., Hassner, T. “Age and gender estimation of unfiltered facesâ€. In: Trans. on Inf. Forensics and Security. IEEE, pp. 2170–2179, 2014. https://doi.org/10.1109/TIFS.2014.2359646
[26] Antipov, G., Berrani, S.A., Dugelay, J.L. “Minimalistic CNN-based ensemble model for gender prediction from face imagesâ€. In: Pattern Recognition Letters. S. 59-65, 2016. https://doi.org/10.1016/j.patrec.2015.11.011
[27] Huang, G.B. “Labeled faces in the wild: A database for studying face recognition in unconstrained environmentsâ€. University of Massachusetts, Amherst. Pp. 7-49, 2007. https://hal.inria.fr/inria-00321923/
[28] Mansanet, J., Albiol, A., Paredes, R. “Local deep neural networks for gender recognitionâ€. In: Pattern Recognition Letters. pp. 80-86, 2016. https://doi.org/10.1016/j.patrec.2015.11.015
[29] Pan, S.J. and Q. Yang. “A survey on transfer learningâ€. IEEE Transactions on Knowledge and Data Engineering, vol. 22, no.10, pp. 1345-1359, 2010. https://doi.org/10.1109/TKDE.2009.191
[30] Hubel, D.H. and T.N. “Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortexâ€. Journal of Physiology, vol. 160, no. 1, pp. 106-154, 1962. https://doi.org/10.1113/jphysiol.1962.sp006837
[31] Ahmed, A., K. Yu, W. Xu, Y. Gong and E. Xing, “Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasksâ€, in Computer Vision–ECCV, Springer. pp. 69-82, 2008. https://doi.org/10.1007/978-3-540-88690-7_6
[32] Huang, J.T., J. Li, D. Yu, L. Deng and Y. Gong, “Cross-language knowledge transfer using multilingual deep neural network with shared hidden layersâ€. in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013. https://doi.org/10.1109/ICASSP.2013.6639081
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Fitra Ahya Mubarok, Mohammad Reza Faisal, Dwi Kartini, Dodon Turianto Nugrahadi, Triando Hamonangan Saragih, Gender Classification of Twitter Users Using Convolutional Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Melinda Melinda, Zharifah Muthiah, Fitri Arnia, Elizar Elizar, Muhammad Irhmasyah, Image Data Acquisition and Classification of Vannamei Shrimp Cultivation Results Based on Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Didih Rizki Chandranegara, Faras Haidar Pratama, Sidiq Fajrianur, Moch Rizky Eka Putra, Zamah Sari, Automated Detection of Breast Cancer Histopathology Image Using Convolutional Neural Network and Transfer Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Nella Rosa Sudianjaya, Chastine Fatichah, Segmentation and Classification of Breast Cancer Histopathological Image Utilizing U-Net and Transfer Learning ResNet50 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Sri Suwarno, Erick Kurniawan, Multi-Level Pooling Model for Fingerprint-Based Gender Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Ardi Mardiana, Ade Bastian, Ano Tarsono, Dony Susandi, Safari Yonasi, Optimized YOLOv8 Model for Accurate Detection and Quantificationof Mango Flowers , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Bambang Krismono Triwijoyo, Ahmat Adil, Anthony Anggrawan, Convolutional Neural Network With Batch Normalization for Classification of Emotional Expressions Based on Facial Images , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Miftahus Sholihin, Mohd Farhan Bin Md. Fudzee, Lilik Anifah, A Novel CNN-Based Approach for Classification of Tomato Plant Diseases , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Rizky Afrinanda, Lusiana Efrizoni, Wirta Agustin, Rahmiati Rahmiati, Hybrid Model for Sentiment Analysis of Bitcoin Prices using Deep Learning Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Muhammad Amirul Mukminin, Tio Dharmawan, Muhamad Arief Hidayat, Gender Classification Using Viola Jones, Orthogonal Difference Local Binary Pattern and Principal Component Analysis , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ahmat Adil, Bambang Krismono Triwijoyo, Sistem Informasi Geografis Pemetaan Jaringan Irigasi dan Embung di Lombok Tengah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Bambang Krismono Triwijoyo, Ahmat Adil, Anthony Anggrawan, Convolutional Neural Network With Batch Normalization for Classification of Emotional Expressions Based on Facial Images , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Anthony Anggrawan, Raisul Azhar, Bambang Krismono Triwijoyo, Mayadi Mayadi, Developing Application in Anticipating DDoS Attacks on Server Computer Machines , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Dadang Priyanto, Bambang Krismono Triwijoyo, Deny Jollyta, Hairani Hairani, Ni Gusti Ayu Dasriani, Data Mining Earthquake Prediction with Multivariate Adaptive Regression Splines and Peak Ground Acceleration , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Ervina Farijki, Bambang Krismono Triwijoyo, SEGMENTASI CITRA MRI MENGGUNAKAN DETEKSI TEPI UNTUK IDENTIFIKASI KANKER PAYUDARA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 2 (2016)
- Bambang Krismono Triwijoyo, SEGMENTASI CITRA PEMBULUH DARAH RETINA MENGGUNAKAN METODE DETEKSI GARIS MULTI SKALA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 1 (2015)