Optimized YOLOv8 Model for Accurate Detection and Quantificationof Mango Flowers
DOI:
https://doi.org/10.30812/matrikjurnalmanajementeknikinformatikadanrekayasakomputer.v24i3.4614Keywords:
Crop Monitoring, Image Processing, Mango Flowers Detection, Object Detection, YOLOv8Abstract
Mangoes are widely cultivated and hold significant economic value worldwide. However, challenges in mango cultivation, such as inconsistent flowering patterns and manual yield estimation, hinder optimal agricultural productivity. This study addresses these issues by leveraging the You Only Look Once (YOLO) version 8 object detection technique to automatically recognize and quantify mango flowers using image processing. This research aims to develop an automated method for detecting and estimating mango yields based on flower density, representing the early stage of the plant growth cycle. The methodology involves utilizing YOLOv8 object detection and image processing techniques. A dataset of mango tree images was collected and used to train a CNN-based YOLOv8 model, incorporating image augmentation and transfer learning to improve detection accuracy under varying lighting and environmental conditions. The results demonstrate the model’s effectiveness, achieving an average mAP score of 0.853, significantly improving accuracy and efficiency compared to traditional detection methods. The findings suggest that automating mango flower detection can enhance precision agriculture practices by reducing reliance on manual labor, improving yield prediction accuracy, and streamlining monitoring techniques. In conclusion, this study contributes to the advancement of precision agriculture through innovative approaches to flower detection and yield estimation at early growth stages. Future research directions include integrating multispectral imaging and drone-based monitoring systems to optimize model performance further and expand its applications in digital agriculture.
Downloads
References
[1] S. Gupta and A. K. Tripathi, “Fruit and vegetable disease detection and classification: Recent trends, challenges,
and future opportunities,” Eng. Appl. Artif. Intell., vol. 133, no. PC, Jul. 2024. [Online]. Available: https:
//doi.org/10.1016/j.engappai.2024.108260
[2] W. Houtman, A. Siagkris-Lekkos, D. Bos, B. Van Den Heuvel, M. D. Boer, J. Elfring, and M. Van De Molengraft, “Automated
flower counting from partial detections: Multiple hypothesis tracking with a connected-flower plant model,” Computers and
Electronics in Agriculture, vol. 188, p. 106346, Sep. 2021, https://doi.org/10.1016/j.compag.2021.106346.
[3] B. Hardyansyah, Heru Sukoco, and Sony Hartono Wijaya, “Monitoring and Controlling System for Mango Logistics Based
on Machine Learning,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 8, no. 1, pp. 150–159, Feb. 2024,
https://doi.org/10.29207/resti.v8i1.5226.
[4] C. Zhang, J. Valente, W. Wang, L. Guo, A. Tubau Comas, P. Van Dalfsen, B. Rijk, and L. Kooistra, “Feasibility assessment
of tree-level flower intensity quantification from UAV RGB imagery: A triennial study in an apple orchard,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 197, pp. 256–273, Mar. 2023, https://doi.org/10.1016/j.isprsjprs.2023.02.003.
[5] X. Mu, L. He, P. Heinemann, J. Schupp, and M. Karkee, “Mask R-CNN based apple flower detection and king flower identification
for precision pollination,” Smart Agricultural Technology, vol. 4, p. 100151, Aug. 2023, https://doi.org/10.1016/j.atech.
2022.100151.
[6] K. Sun, X. Wang, S. Liu, and C. Liu, “Apple, peach, and pear flower detection using semantic segmentation network and
shape constraint level set,” Computers and Electronics in Agriculture, vol. 185, p. 106150, Jun. 2021, https://doi.org/10.1016/j.
compag.2021.106150.
[7] D. Wu, S. Lv, M. Jiang, and H. Song, “Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and
accurate detection of apple flowers in natural environments,” Computers and Electronics in Agriculture, vol. 178, p. 105742,
Nov. 2020, https://doi.org/10.1016/j.compag.2020.105742.
[8] X. A. Wang, J. Tang, and M. Whitty, “Side-view apple flower mapping using edge-based fully convolutional networks for
variable rate chemical thinning,” Computers and Electronics in Agriculture, vol. 178, p. 105673, Nov. 2020, https://doi.org/10.
1016/j.compag.2020.105673.
[9] J. Lee, S. A. Gadsden, M. Biglarbegian, and J. A. Cline, “Smart Agriculture: A Fruit Flower Cluster Detection Strategy in
Apple Orchards Using Machine Vision and Learning,” Applied Sciences, vol. 12, no. 22, p. 11420, Nov. 2022, https://doi.org/
10.3390/app122211420.
[10] A. Kutyrev and N. Andriyanov, “Apple Flower Recognition Using Convolutional Neural Networks with Transfer Learning
and Data Augmentation Technique,” E3S Web of Conferences, vol. 493, p. 01006, 2024, https://doi.org/10.1051/e3sconf/
202449301006.
[11] N. A. Kiktev and A. Kutyrev, “Flower Detection and Counting Using CNN for Thinning Decisions in Apple Trees,” in Workshops
and Short Paper Proceedings of the 8th International Conference on Digital Technologies in Education, Science and
Industry 2023, Almaty, Kazakhstan, December 6-7, 2023, ser. CEUR Workshop Proceedings, A. Khikmetov, K. Kolesnikova,
and M. T. Ipalakova, Eds., vol. 3680. CEUR-WS.org, 2023.
[12] F. Palacios, G. Bueno, J. Salido, M. P. Diago, I. Hern´andez, and J. Tardaguila, “Automated grapevine flower detection and
quantification method based on computer vision and deep learning from on-the-go imaging using a mobile sensing platform
under field conditions,” Computers and Electronics in Agriculture, vol. 178, p. 105796, Nov. 2020, https://doi.org/10.1016/j.
compag.2020.105796.
[13] P. Jafar, D. Indra, and F. Umar, “Color Feature Extraction for Grape Variety Identification: Na¨ıve Bayes Approach,” MATRIK
: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 23, no. 3, pp. 677–689, Jul. 2024, https://doi.org/10.
30812/matrik.v23i3.3823.
[14] P. Lin, W. S. Lee, Y. M. Chen, N. Peres, and C. Fraisse, “A deep-level region-based visual representation architecture for
detecting strawberry flowers in an outdoor field,” Precision Agriculture, vol. 21, no. 2, pp. 387–402, Apr. 2020, https://doi.org/
10.1007/s11119-019-09673-7.
[15] J. S. Estrada, J. P. Vasconez, L. Fu, and F. A. Cheein, “Deep Learning based flower detection and counting in highly populated
images: A peach grove case study,” Journal of Agriculture and Food Research, vol. 15, p. 100930, Mar. 2024, https://doi.org/
10.1016/j.jafr.2023.100930.
[16] L. Sun, J. Yao, H. Cao, H. Chen, and G. Teng, “Improved YOLOv5 Network for Detection of Peach Blossom Quantity,”
Agriculture, vol. 14, no. 1, p. 126, Jan. 2024, https://doi.org/10.3390/agriculture14010126.
[17] X. Xu, H. Wang, M. Miao, W. Zhang, Y. Zhang, H. Dai, Z. Zheng, and X. Zhang, “Cucumber Flower Detection Based on
YOLOv5s-SE7 Within Greenhouse Environments,” IEEE Access, vol. 11, pp. 64 358–64 369, 2023, https://doi.org/10.1109/
ACCESS.2023.3286545.
[18] G. Yu, R. Cai, Y. Luo, M. Hou, and R. Deng, “A-pruning: A lightweight pineapple flower counting network based on filter pruning,”
Complex & Intelligent Systems, vol. 10, no. 2, pp. 2047–2066, Apr. 2024, https://doi.org/10.1007/s40747-023-01261-7.
[19] B. Zhao, M. Sun, Z. Cai, Z. Su, J. Li, Z. Shen, R. Ma, J. Yan, and M. Yu, “Aroma Profiling Analysis of Peach Flowers Based
on Electronic Nose Detection,” Horticulturae, vol. 8, no. 10, p. 875, Sep. 2022, https://doi.org/10.3390/horticulturae8100875.
[20] B. Deng, Y. Lu, and Z. Li, “Detection, counting, and maturity assessment of blueberries in canopy images using YOLOv8 and
YOLOv9,” Smart Agricultural Technology, vol. 9, p. 100620, Dec. 2024, https://doi.org/10.1016/j.atech.2024.100620.
[21] R. Gai, Y. Liu, and G. Xu, “TL-YOLOv8: A Blueberry Fruit Detection Algorithm Based on Improved YOLOv8 and Transfer
Learning,” IEEE Access, vol. 12, pp. 86 378–86 390, 2024, https://doi.org/10.1109/ACCESS.2024.3416332.
[22] S. Tian, C. Fang, X. Zheng, and J. Liu, “Lightweight Detection Method for Real-Time Monitoring Tomato Growth Based on
Improved YOLOv5s,” IEEE Access, vol. 12, pp. 29 891–29 899, 2024, https://doi.org/10.1109/ACCESS.2024.3368914.
[23] W. H. M. Saad, S. A. A. Karim, M. S. J. A. Razak, S. A. Radzi, and Z. M. Yussof, “Classification and detection of chili
and its flower using deep learning approach,” Journal of Physics: Conference Series, vol. 1502, no. 1, p. 012055, Mar. 2020,
https://doi.org/10.1088/1742-6596/1502/1/012055.
[24] L. Arcila-Diaz, H. I. Mejia-Cabrera, and J. Arcila-Diaz, “Estimation of Mango Fruit Production Using Image Analysis and
Machine Learning Algorithms,” Informatics, vol. 11, no. 4, p. 87, Nov. 2024, https://doi.org/10.3390/informatics11040087.
[25] Z. Zhong, L. Yun, F. Cheng, Z. Chen, and C. Zhang, “Light-YOLO: A Lightweight and Efficient YOLO-Based Deep Learning
Model for Mango Detection,” Agriculture, vol. 14, no. 1, p. 140, Jan. 2024, https://doi.org/10.3390/agriculture14010140.
[26] C. Neupane, K. B. Walsh, R. Goulart, and A. Koirala, “Developing Machine Vision in Tree-Fruit Applications—Fruit Count,
Fruit Size and Branch Avoidance in Automated Harvesting,” Sensors, vol. 24, no. 17, p. 5593, Aug. 2024, https://doi.org/10.
3390/s24175593.
[27] C. Zhang, J. Valente, W. Wang, L. Guo, A. Tubau Comas, P. Van Dalfsen, B. Rijk, and L. Kooistra, “Feasibility assessment
of tree-level flower intensity quantification from UAV RGB imagery: A triennial study in an apple orchard,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 197, pp. 256–273, Mar. 2023, https://doi.org/10.1016/j.isprsjprs.2023.02.003.
[28] M. Ariza-Sent´ıs, S. V´elez, R. Mart´ınez-Pe˜na, H. Baja, and J. Valente, “Object detection and tracking in Precision Farming: A
systematic review,” Computers and Electronics in Agriculture, vol. 219, p. 108757, Apr. 2024, https://doi.org/10.1016/j.compag.
2024.108757.
[29] X. Chen, C. Liu, S. Wang, and X. Deng, “LSI-YOLOv8: An Improved Rapid and High Accuracy Landslide Identification
Model Based on YOLOv8 From Remote Sensing Images,” IEEE Access, vol. 12, pp. 97 739–97 751, 2024, https://doi.org/10.
1109/ACCESS.2024.3426040.
[30] Z. Jrondi, A. Moussaid, and M. Y. Hadi, “Exploring End-to-End object detection with transformers versus YOLOv8 for enhanced
citrus fruit detection within trees,” Systems and Soft Computing, vol. 6, p. 200103, Dec. 2024, https://doi.org/10.1016/j.
sasc.2024.200103.
[31] E. Syahrudin, E. Utami, and A. D. Hartanto, “Enhanced Yolov8 with OpenCV for Blind-Friendly Object Detection and Distance
Estimation,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 8, no. 2, pp. 199–207, Mar. 2024, https://doi.org/
10.29207/resti.v8i2.5529.
[32] S. R. Khanal, R. Sapkota, D. Ahmed, U. Bhattarai, and M. Karkee, “Machine Vision System for Early-stage Apple Flowers and
Flower Clusters Detection for Precision Thinning and Pollination,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 8914–8919, 2023,
https://doi.org/10.1016/j.ifacol.2023.10.096.
[33] W. Yuan, “AriAplBud: An Aerial Multi-Growth Stage Apple Flower Bud Dataset for Agricultural Object Detection Benchmarking,”
Data, vol. 9, no. 2, p. 36, Feb. 2024, https://doi.org/10.3390/data9020036.
[34] M. H. Amaral, C. McConchie, G. Dickinson, and K. B. Walsh, “Growing Degree Day Targets for Fruit Development of Australian
Mango Cultivars,” Horticulturae, vol. 9, no. 4, p. 489, Apr. 2023, https://doi.org/10.3390/horticulturae9040489.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ardi Mardiana, Ade Bastian, Ano Tarsono, Dony Susandi, Safari Yonasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
Similar Articles
- Ervina Farijki, Bambang Krismono Triwijoyo, SEGMENTASI CITRA MRI MENGGUNAKAN DETEKSI TEPI UNTUK IDENTIFIKASI KANKER PAYUDARA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 2 (2016)
- Imanuddin Imanuddin, Fachrid Alhadi, Raza Oktafian, Ahmad Ihsan, Deteksi Mata Mengantuk pada Pengemudi Mobil Menggunakan Metode Viola Jones , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Suhirman Suhirman, Shoffan Saifullah, Ahmad Tri Hidayat, Rr Hajar Puji Sejati, Otsu Method for Chicken Egg Embryo Detection based-on Increase Image Quality , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Syafri Arlis, Muhammad Reza Putra, Musli Yanto, Improved Image Segmentation using Adaptive Threshold Morphology on CT-Scan Images for Brain Tumor Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Miftahus Sholihin, Mohd Farhan Bin Md. Fudzee, Lilik Anifah, A Novel CNN-Based Approach for Classification of Tomato PlantDiseases , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Bob Subhan Riza, Jufriadif Na'am, Sumijan Sumijan, Tuberculosis Extra Pulmonary Bacilli Detection System Based on Ziehl Neelsen Images with Segmentation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Siti Ummi Masruroh, Andrew Fiade, Muhammad Ikhsan Tanggok, Rizka Amalia Putri, Luigi Ajeng Pratiwi, Convolutional Neural Network for Colorization of Black and White Photos , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Ni Wayan Sumartini Saraswati, I Wayan Agustya Saputra, Sistem Monitoring Tekanan Air pada PDAM Gianyar Berbasis Web , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Imam Fahrur Rozi, Ahmadi Yuli Ananta, Endah Septa Sintiya, Astrifidha Rahma Amalia, Yuri Ariyanto, Arin Kistia Nugraeni, Analyzing the Application of Optical Character Recognition: A Case Study in International Standard Book Number Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Anita Desiani, Irmeilyana Irmeilyana, Endro Setyo Cahyono, Des Alwine Zayanti, Sugandi Yahdin, Muhammad Arhami, Irvan Andrian, Combination Contrast Stretching and Adaptive Thresholding for Retinal Blood Vessel Image , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
You may also start an advanced similarity search for this article.