SEGMENTASI CITRA PEMBULUH DARAH RETINA MENGGUNAKAN METODE DETEKSI GARIS MULTI SKALA
DOI:
https://doi.org/10.30812/matrik.v15i1.28Keywords:
segmentation, image, retinal blood vessels, multi scale line detectorAbstract
Changes in retinal blood vessels feature a sign of serious illnesses such as heart disease and stroke. Therefore, the analysis of retinal vascular features can help in detecting these changes and allow patients to take preventive measures at an early stage of this disease. Automation of this process will help reduce the costs associated with the specialist and eliminate inconsistencies that occur in manual detection system. Among the retinal image analysis, image extraction retinal blood vessels is a crucial step before measurement. In this paper, we use an effective method of automatically extracting the blood vessels of the color images of the retina using a length detector line in several different scales, in order to maintain the strength and eliminates the weaknesses of each detector individual lines, the result of the detection lines on various scales combined to produce a segmentation of each image of the retina. The performance of the method is evaluated quantitatively using DRIVE dataset. Test results show that this method achieve high accuracy is 0.9407 approaching measurement results manually by experts, and this method produces accurate segmentation in detecting retinal blood vessels with effciency by quickly segmenting time is 2.5 seconds per image.
Downloads
References
[2]. T. Y. Wong, R. McIntosh, Hypertensive retinopathy signs as risk indicators of cardiovascular morbidity and mortality, British medical bulletin 73 (1) (2005) 57-70.
[3]. E. J. Sussman, W. G. Tsiaras, K. A. Soper, Diagnosis of diabetic eye disease, JAMA: the journal of the American Medical Association 247 (23) (1982) 3231-3234.
[4]. T. Y. Wong, R. Klein, D. J. Couper, L. S. Cooper, E. Shahar, L. D. Hubbard, M. R.Wo_ord, A. R. Sharrett, Retinal microvascular abnormalities and incident stroke: the atherosclerosis risk in communities study, The Lancet 358 (9288) (2001) 1134-1140.
[5]. T. Y. Wong, R. Klein, A. R. Sharrett, B. B. Duncan, D. J. Couper, B. E. K. Klein, L. D. Hubbard, F. J. Nieto, Retinal arteriolar diameter and risk for hypertension, Annals of internal medicine 140 (4) (2004) 248-255.
[6]. J. Staal, M. D. Abrmo_, M. Niemeijer, M. A. Viergever, B. van Ginneken, Ridge-based vessel segmentation in color images of the retina, Medical Imaging, IEEE Transactions on 23 (4) (2004) 501-509.
[7]. J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, M. J. Cree, Retinal vessel segmentation using the 2-d gabor wavelet and supervised classi_cation, Medical Imaging, IEEE Transactions on 25 (9) (2006) 1214-1222.
[8]. E. Ricci, R. Perfetti, Retinal blood vessel segmentation using line operators and support vector classi_ cation, Medical Imaging, IEEE Transactions on 26 (10) (2007) 1357-1365.
[9]. K. Fritzsche, A. Can, H. Shen, C. Tsai, J. Turner, H.L.Tanenbuam, C.V. Stewart, B. Roysam, J.S. Suri, S.Laxminarayan, Automated model based segmentation,tracing and analysis of retinal vasculature from digital fundus images, in: State-of-TheArt Angiography, Applications and Plaque Imaging Using MR, CT Ultrasound and X-rays, Academic Press, 2003, pp. 225–298.
[10]. E. Ricci, R. Perfetti, Retinal blood vessel segmentation using line operators and support vector classication, Medical Imaging, IEEE Transactions on 26 (10) (2007) 1357-1365.
[11]. Uyen T. V. Nguyen, Alauddin Bhuiyan, Laurence A. F. Park, Kotagiri Ramamohanarao, An Efective Retinal Blood Vessel Segmentation Method using Multi-scale Line Detection, article in pattern recognation – ResearchGate. On 1 (2012).
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Anas Syaifudin, Purwanto Purwanto, Heribertus Himawan, M. Arief Soeleman, Customer Segmentation with RFM Model using Fuzzy C-Means and Genetic Programming , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Mardiana Mardiana, Eka Hartati, Analisis Pengukuran Tingkat Kepuasan Pengguna Terhadap Penerapan Aplikasi SISKEUDES Pada Kabupaten Banyuasin Sumatera Selatan , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Ahmad Zein Al Wafi, Febry Putra Rochim, Veda Bezaleel, Investigating Liver Disease Machine Learning Prediction Performancethrough Various Feature Selection Methods , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Arwin Datumaya Wahyudi Sumari, Fatiha Eros Perdana, Dwi Nugraheny, Sandra Lovrencic, Improving the User Interface and Experience of a Student PortalThrough the Eight Golden Rules , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Lilik Widyawati, Imam Riadi, Yudi Prayudi, Comparative Analysis of Image Steganography using SLT, DCT and SLT-DCT Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Sela Octaviani, Evi Triandini, Dandy Pramana Hostiadi, Evaluating Lecturer Satisfaction on Academic Information System Using Usability and EUCS at Bandung University of Technology , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Djoko Kuswanto, Athirah Hersyadea Alifah Putri, Ellya Zulaikha, Tedy Apriawan, Yuri Pamungkas, Evi Triandini, Nadya Paramitha Jafari, Thassaporn Chusak, Cranioplasty Training Innovation Using Design Thinking: AugmentedReality and Interchangeability-Based Mannequin Prototype , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Rizky Hafizh Jatmiko, Yoga Pristyanto, Investigating The Effectiveness of Various Convolutional Neural Network Model Architectures for Skin Cancer Melanoma Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Ni Wayan Sumartini Saraswati, I Wayan Dharma Suryawan, Ni Komang Tri Juniartini, I Dewa Made Krishna Muku, Poria Pirozmand, Weizhi Song, Recognizing Pneumonia Infection in Chest X-Ray Using Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Achmad Afif Irwansyah, Aripriharta Aripriharta, Didik Dwi Prasetya, Stochastic Optimization for Hostage Rescue Using Internet of Things and Queen Honey Bee Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ahmat Adil, Bambang Krismono Triwijoyo, Sistem Informasi Geografis Pemetaan Jaringan Irigasi dan Embung di Lombok Tengah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Bambang Krismono Triwijoyo, Ahmat Adil, Anthony Anggrawan, Convolutional Neural Network With Batch Normalization for Classification of Emotional Expressions Based on Facial Images , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Dadang Priyanto, Bambang Krismono Triwijoyo, Deny Jollyta, Hairani Hairani, Ni Gusti Ayu Dasriani, Data Mining Earthquake Prediction with Multivariate Adaptive Regression Splines and Peak Ground Acceleration , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Anthony Anggrawan, Raisul Azhar, Bambang Krismono Triwijoyo, Mayadi Mayadi, Developing Application in Anticipating DDoS Attacks on Server Computer Machines , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Ervina Farijki, Bambang Krismono Triwijoyo, SEGMENTASI CITRA MRI MENGGUNAKAN DETEKSI TEPI UNTUK IDENTIFIKASI KANKER PAYUDARA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 2 (2016)
- Bambang Krismono Triwijoyo, Model Fast Tansfer Learning pada Jaringan Syaraf Tiruan Konvolusional untuk Klasifikasi Gender Berdasarkan Citra Wajah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
.png)











