Automatic Door Access Model Based on Face Recognition using Convolutional Neural Network
DOI:
https://doi.org/10.30812/matrik.v22i1.2350Keywords:
Automatic door access, Amason face recognition, Convolutional Neural Network, Facial recognition, RaspberryAbstract
Automatic door access technology by utilizing biometrics such as fingerprints, retinas and facial structures is constantly evolving. The use of masks during the Covid-19 Pandemic and post-pandemic has become an obligation wherever humans are active. The study aimed to create an automated door access model using Convolutional Neural Network (CNN) algorithms and Amazon Rekognition as cloud-based software. The CNN algorithm is applied to classify faces wearing masks or not wearing masks. The CNN architecture model uses sequential, convolution2D, max polling 2D, flatten dan dense. The hardware includes the Raspberry Pi, USB Webcam, Relay, and Magnetic Doorlock. The test results were obtained from the results of the accuracy plot on the Convolutional Neural Network model with an accuracy rate of 99% at an epoch value of 8 with a learning time of 67 seconds.
Downloads
References
[2] M. Abdul, R. Irham, and D. A. Prasetya, “Prototipe Pendeteksi Masker Pada Ruangan Wajib Masker untuk Kendali Pintu Otomatis Berbasis Deep Learning Sebagai Pencegahan Penularan Covid-19,†Prototipe Pendeteksi Masker Pada Ruangan Wajib Masker Untuk Kendali Pintu Otomatis Berbasis Deep Learning Sebagai Pencegahan Penularan Covid-19, pp. 47–55, 2020.
[3] H. W. N. Agusti and B. A. Gisela, “Pengenalan Wajah dengan Menggunakan Smartphone : Sistematik Review,†Journal of Indonesian Forensic and Legal Medicine, vol. 2, no. 2, pp. 156–163, 2020.
[4] A. Apriani, H. Zakiyudin, and K. Marzuki, “Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF System Penerimaan Mahasiswa Baru pada Kampus Swasta,†Jurnal Bumigora Information Technology (BITe), vol. 3, no. 1, pp. 19–27, 2021, doi: 10.30812/bite.v3i1.1110.
[5] I. F. Ashari, M. D. Satria, and M. Idris, “Parking System Optimization Based on IoT using Face and Vehicle Plat Recognition via Amazon Web Service and ESP-32 CAM,†Computer Engineering and Applications Journal, vol. 11, no. 2, pp. 137–153, 2022, doi: 10.18495/comengapp.v11i2.409.
[6] M. F. Aslan, K. Sabanci, A. Durdu, and M. F. Unlersen, “COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization,†Computers in Biology and Medicine, 2020.
[7] M. N. Baay, A. N. Irfansyah, and M. Attamimi, “Sistem Otomatis Pendeteksi Wajah Bermasker Menggunakan Deep Learning,†Jurnal Teknik ITS, vol. 10, no. 1, pp. 64–70, Aug. 2021, doi: 10.12962/j23373539.v10i1.59790.
[8] A. H. Bachtiar, P. P. Surya, and R. P. Astutik, “Rancang Bangun Dual Keamanan Sistem Pintu Rumah Menggunakan Pengenalan Wajah dan Sidik Jari Berbasis Iot (Internet of Things),†Jurnal POLEKTRO: Jurnal Power Elektronik, vol. 1, no. 1, pp. 102–107, 2022.
[9] A. D, “Face Recognition using Machine Learning Algorithms,†JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, vol. 14, no. 3, Jun. 2019, doi: 10.26782/jmcms.2019.06.00017.
[10] P. Elechi, E. Okowa, and U. Ekwueme, “Facial Recognition Based Smart Door Lock System,†FUPRE Journal of Scientific and Industrial Research, vol. 6, no. 2, pp. 95–105, 2022.
[11] A. Febriansyah, J. Saputra, and P. Desvirati, “Alat Pendeteksi Suhu Tubuh dan Wajah (Kebutuhan Bukti Kehadiran) Berbasis Data,†Manutech : Jurnal Teknologi Manufaktur, vol. 14, no. 01, pp. 1–6, 2022.
[12] Gaurav Dhiman, Srihari. K, Ramesh. R, and Udayakumar. E, “An Innovative Approach for Face Recognition Using Raspberry Pi,†Artificial Intelligence Evolution, vol. 10, no. 1, pp. 102–107, Aug. 2020, doi: 10.37256/aie.12202062.
[13] H. Hairani, A. S. Suweleh, and D. Susilowaty, “Penanganan Ketidak Seimbangan Kelas Menggunakan Pendekatan Level Data,†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 1, pp. 109–116, 2020, doi: 10.30812/matrik.v20i1.846.
[14] A. Hassouneh, A. M. Mutawa, and M. Murugappan, “Development of a Real-Time Emotion Recognition System Using Facial Expressions and EEG based on machine learning and deep neural network methods,†Informatics in Medicine Unlocked, vol. 20, no. 1, pp. 2–9, 2020, doi: 10.1016/j.imu.2020.100372.
[15] S. E. Oltean, “Mobile Robot Platform with Arduino Uno and Raspberry Pi for Autonomous Navigation,†Procedia Manufacturing, vol. 32, pp. 572–577, 2019, doi: 10.1016/j.promfg.2019.02.254.
[16] R. R. Ramdhani, R. I. Adam, and A. A. Ridha, “Implementasi Deep Learning Untuk Deteksi Masker Deep Learning Implementation for Face Mask Detection,†Journal of Information Technology and Computer Science (INTECOMS), vol. 4, no. 2, p. 2021, 2021.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Andi Hary Akbar, Heri Wijayanto, I Wayan Agus Arimbawa, K-Means-Based Customer Segmentation with Domain-Specific Feature Engineering for Water Payment Arrears Management , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Yuri Ariyanto, Yan Watequlis Syaifudin, M. Hasyim Ratsanjani, Ali Ridho Muladawila, Triana Fatmawati, Pramana Yoga Saputra, Chandrasena Setiadi , Cyber Threat Detection and Automated Response Using Wazuh and Telegram API , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Purnawarman Musa, Eri Prasetyo Wibowo, Saiful Bahri Musa, Iqbal Baihaqi, Pelican Crossing System for Control a Green Man Light with Predicted Age , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Syafri Arlis, Muhammad Reza Putra, Musli Yanto, Improved Image Segmentation using Adaptive Threshold Morphology on CT-Scan Images for Brain Tumor Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Angelina Ervina Jeanette Egeten, Lya Santi Rahayu, Riansyah Rafsanjani, Analisis dan Perancangan Sistem Reservasi Paket Wisata Untuk Internal Karyawan PT. Garuda Maintenance Facility (GMF) Tbk , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Putri Jafar, Dolly Indra, Fitriyani Umar, Color Feature Extraction for Grape Variety Identification: Naïve Bayes Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Jusmita Weriza, Ismail Husein, Noranizamardia Noranizamardia, M Fakhariza, Khairan Marzuki, Development of OnlineWeb-Based New Student Graduation Application in Junior High School , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Yarza Aprizal, Rabin Ibnu Zainal, Afriyudi Afriyudi, Perbandingan Metode Backpropagation dan Learning Vector Quantization (LVQ) Dalam Menggali Potensi Mahasiswa Baru di STMIK PalComTech , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Ni Wayan Sumartini Saraswati, I Gusti Ayu Agung Diatri Indradewi, Recognize The Polarity of Hotel Reviews using Support Vector Machine , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Imanuddin Imanuddin, Fachrid Alhadi, Raza Oktafian, Ahmad Ihsan, Deteksi Mata Mengantuk pada Pengemudi Mobil Menggunakan Metode Viola Jones , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
You may also start an advanced similarity search for this article.
.png)











