Automatic Door Access Model Based on Face Recognition using Convolutional Neural Network
DOI:
https://doi.org/10.30812/matrik.v22i1.2350Keywords:
Automatic door access, Amason face recognition, Convolutional Neural Network, Facial recognition, RaspberryAbstract
Automatic door access technology by utilizing biometrics such as fingerprints, retinas and facial structures is constantly evolving. The use of masks during the Covid-19 Pandemic and post-pandemic has become an obligation wherever humans are active. The study aimed to create an automated door access model using Convolutional Neural Network (CNN) algorithms and Amazon Rekognition as cloud-based software. The CNN algorithm is applied to classify faces wearing masks or not wearing masks. The CNN architecture model uses sequential, convolution2D, max polling 2D, flatten dan dense. The hardware includes the Raspberry Pi, USB Webcam, Relay, and Magnetic Doorlock. The test results were obtained from the results of the accuracy plot on the Convolutional Neural Network model with an accuracy rate of 99% at an epoch value of 8 with a learning time of 67 seconds.
Downloads
References
[2] M. Abdul, R. Irham, and D. A. Prasetya, “Prototipe Pendeteksi Masker Pada Ruangan Wajib Masker untuk Kendali Pintu Otomatis Berbasis Deep Learning Sebagai Pencegahan Penularan Covid-19,†Prototipe Pendeteksi Masker Pada Ruangan Wajib Masker Untuk Kendali Pintu Otomatis Berbasis Deep Learning Sebagai Pencegahan Penularan Covid-19, pp. 47–55, 2020.
[3] H. W. N. Agusti and B. A. Gisela, “Pengenalan Wajah dengan Menggunakan Smartphone : Sistematik Review,†Journal of Indonesian Forensic and Legal Medicine, vol. 2, no. 2, pp. 156–163, 2020.
[4] A. Apriani, H. Zakiyudin, and K. Marzuki, “Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF System Penerimaan Mahasiswa Baru pada Kampus Swasta,†Jurnal Bumigora Information Technology (BITe), vol. 3, no. 1, pp. 19–27, 2021, doi: 10.30812/bite.v3i1.1110.
[5] I. F. Ashari, M. D. Satria, and M. Idris, “Parking System Optimization Based on IoT using Face and Vehicle Plat Recognition via Amazon Web Service and ESP-32 CAM,†Computer Engineering and Applications Journal, vol. 11, no. 2, pp. 137–153, 2022, doi: 10.18495/comengapp.v11i2.409.
[6] M. F. Aslan, K. Sabanci, A. Durdu, and M. F. Unlersen, “COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization,†Computers in Biology and Medicine, 2020.
[7] M. N. Baay, A. N. Irfansyah, and M. Attamimi, “Sistem Otomatis Pendeteksi Wajah Bermasker Menggunakan Deep Learning,†Jurnal Teknik ITS, vol. 10, no. 1, pp. 64–70, Aug. 2021, doi: 10.12962/j23373539.v10i1.59790.
[8] A. H. Bachtiar, P. P. Surya, and R. P. Astutik, “Rancang Bangun Dual Keamanan Sistem Pintu Rumah Menggunakan Pengenalan Wajah dan Sidik Jari Berbasis Iot (Internet of Things),†Jurnal POLEKTRO: Jurnal Power Elektronik, vol. 1, no. 1, pp. 102–107, 2022.
[9] A. D, “Face Recognition using Machine Learning Algorithms,†JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, vol. 14, no. 3, Jun. 2019, doi: 10.26782/jmcms.2019.06.00017.
[10] P. Elechi, E. Okowa, and U. Ekwueme, “Facial Recognition Based Smart Door Lock System,†FUPRE Journal of Scientific and Industrial Research, vol. 6, no. 2, pp. 95–105, 2022.
[11] A. Febriansyah, J. Saputra, and P. Desvirati, “Alat Pendeteksi Suhu Tubuh dan Wajah (Kebutuhan Bukti Kehadiran) Berbasis Data,†Manutech : Jurnal Teknologi Manufaktur, vol. 14, no. 01, pp. 1–6, 2022.
[12] Gaurav Dhiman, Srihari. K, Ramesh. R, and Udayakumar. E, “An Innovative Approach for Face Recognition Using Raspberry Pi,†Artificial Intelligence Evolution, vol. 10, no. 1, pp. 102–107, Aug. 2020, doi: 10.37256/aie.12202062.
[13] H. Hairani, A. S. Suweleh, and D. Susilowaty, “Penanganan Ketidak Seimbangan Kelas Menggunakan Pendekatan Level Data,†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 1, pp. 109–116, 2020, doi: 10.30812/matrik.v20i1.846.
[14] A. Hassouneh, A. M. Mutawa, and M. Murugappan, “Development of a Real-Time Emotion Recognition System Using Facial Expressions and EEG based on machine learning and deep neural network methods,†Informatics in Medicine Unlocked, vol. 20, no. 1, pp. 2–9, 2020, doi: 10.1016/j.imu.2020.100372.
[15] S. E. Oltean, “Mobile Robot Platform with Arduino Uno and Raspberry Pi for Autonomous Navigation,†Procedia Manufacturing, vol. 32, pp. 572–577, 2019, doi: 10.1016/j.promfg.2019.02.254.
[16] R. R. Ramdhani, R. I. Adam, and A. A. Ridha, “Implementasi Deep Learning Untuk Deteksi Masker Deep Learning Implementation for Face Mask Detection,†Journal of Information Technology and Computer Science (INTECOMS), vol. 4, no. 2, p. 2021, 2021.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Angelina Ervina Jeanette Egeten, Siska A. Damanik, Ika Agustina, Marcelina Panggabean, Perancangan Sistem Informasi Posyandu Berbasis Web Pada Yayasan Kalyanamitra Di Jakarta Timur Untuk Mendukung Program Bidang Pendampingan Komunitas , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Muhammad Tajuddin, Ahmat Adil, Andi Sofyan Anas, Game for Sasak Script Based on Knuth Morris Pratt Algorithm and ADDIE Model , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Ahmad Naufal Labiib Nabhaan, Rakandhiya Daanii Rachmanto, Arief Setyanto, Characterizing Hardware Utilization on Edge Devices when Inferring Compressed Deep Learning Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Taufik Hidayat, Mohammad Ridwan, Muhamad Fajrul Iqbal, Sukisno Sukisno, Robby Rizky, William Eric Manongga, Determining Toddler's Nutritional Status with Machine Learning Classification Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Angga Rahagiyanto, Identifikasi Ekstraksi Fitur untuk Gerakan Tangan dalam Bahasa Isyarat (SIBI) Menggunakan Sensor MYO Armband , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Nella Rosa Sudianjaya, Chastine Fatichah, Segmentation and Classification of Breast Cancer Histopathological Image Utilizing U-Net and Transfer Learning ResNet50 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Nenny Anggraini, Zulkifli Zulkifli, Nashrul Hakiem, Development of Smart Charity Box Monitoring Robot in Mosque with Internet of Things and Firebase using Raspberry Pi , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Hepatika Zidny Ilmadina, Muhammad Naufal, Dega Surono Wibowo, Drowsiness Detection Based on Yawning Using Modified Pre-trained Model MobileNetV2 and ResNet50 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Virdiana Sriviana Fatmawaty, Imam Riadi, Herman Herman, Higher Education Institution Clustering Based on Key Performance Indicators using Quartile Binning Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Christofer Satria, Peter Wijaya Sugijanto, Anthony Anggrawan, I Nyoman Yoga Sumadewa, Aprilia Dwi Dayani, Rini Anggriani, Multi-Algorithm Approach to Enhancing Social Assistance Efficiency Through Accurate Poverty Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
You may also start an advanced similarity search for this article.
.png)











