Proliferative Diabetic Retinopathy Detection Using ConvolutionalNeural Network with Enhanced Retinal Image

Authors

  • Wilda Imama Sabilla Politeknik Negeri Malang, Malang, Indonesia
  • Mamluatul Hani'ah Politeknik Negeri Malang, Malang, Indonesia
  • Ariadi Retno Tri Hayati Ririd Politeknik Negeri Malang, Malang, Indonesia
  • Astrifidha Rahma Amalia Politeknik Negeri Malang, Malang, Indonesia

DOI:

https://doi.org/10.30812/matrik.v25i1.4976

Keywords:

Convolutional Neural Network, Diabetic Retinopathy, Image Enhancement, PDR Detection, Retinal Image

Abstract

Proliferative Diabetic Retinopathy (PDR) is the most severe stage of Diabetic Retinopathy (DR), carrying the highest risk of complications. Automatic detection can help provide earlier and more accurate PDR diagnosis, but prediction accuracy may decline due to limitations in retinal images. Therefore, image enhancement techniques are often applied to improve DR classification. This study aims to detect PDR from retinal images using Convolutional Neural Networks (CNNs) and to evaluate the impact of three enhancement methods. This research method is based on a CNN architecture, including ResNet34, InceptionV2, and DenseNet121, as well as enhancement methods such as CLAHE, Homomorphic Filtering (HF), and Multiscale Contrast Enhancement (MCE). The results of this research show that CNN performance varies across architectures and enhancement methods. The highest performance was achieved using ResNet34 with HF, yielding an accuracy of 0.976, precision of 0.934, and recall of 0.904. CLAHE generally improved performance across architectures, achieving the best average accuracy of 0.953, whereas MCE decreased classification accuracy. Overall, the findings highlight the importance of selecting appropriate enhancement methods to improve PDR detection accuracy. Implementing such systems in clinical screening could help reduce the risk of vision impairment among diabetic patients.

Downloads

Download data is not yet available.

References

[1] L. Norton, C. Shannon, A. Gastaldelli, and R. A. DeFronzo, “Insulin: The master regulator of glucose metabolism,” Metabolism, vol. 129, p. 155142, Apr. 2022, doi: 10.1016/j.metabol.2022.155142.

[2] J. Lemantara and T. Lusiani, “ANALISIS PREDIKSI PENYAKIT DIABETES PADA WANITA MENGGUNAKAN METODE NAÏVE BAYES DAN K-NEAREST NEIGHBOR,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, Aug. 2024, doi: 10.23960/jitet.v12i3.4911.

[3] C. M. Annur, “Ada 41 Ribu Penderita Diabetes Tipe 1 di Indonesia pada 2022, Terbanyak di ASEAN,” Databoks. Accessed: Dec. 24, 2024. [Online]. Available: https://databoks.katadata.co.id/layanan-konsumen-kesehatan/statistik/cd9ffca95090718/ada-41-ribu-penderita-diabetes-tipe-1-di-indonesia-pada-2022-terbanyak-di-asean

[4] I. Kandel and M. Castelli, “Transfer Learning with Convolutional Neural Networks for Diabetic Retinopathy Image Classification. A Review,” Applied Sciences, vol. 10, no. 6, p. 2021, Mar. 2020, doi: 10.3390/app10062021.

[5] M. Hayati et al., “Impact of CLAHE-based image enhancement for diabetic retinopathy classification through deep learning,” Procedia Comput Sci, vol. 216, pp. 57–66, 2023, doi: 10.1016/j.procs.2022.12.111.

[6] R. Schwartz et al., “Objective Evaluation of Proliferative Diabetic Retinopathy Using OCT,” Ophthalmol Retina, vol. 4, no. 2, pp. 164–174, Feb. 2020, doi: 10.1016/j.oret.2019.09.004.

[7] S. Vaz-Pereira, T. Morais-Sarmento, and R. Esteves Marques, “Optical coherence tomography features of neovascularization in proliferative diabetic retinopathy: a systematic review,” Int J Retina Vitreous, vol. 6, no. 1, p. 26, Dec. 2020, doi: 10.1186/s40942-020-00230-3.

[8] K. Vijiyakumar, V. Govindasamy, and V. Akila, “An effective object detection and tracking using automated image annotation with inception based faster R-CNN model,” International Journal of Cognitive Computing in Engineering, vol. 5, pp. 343–356, 2024, doi: 10.1016/j.ijcce.2024.07.006.

[9] Luqman Hakim, Z. Sari, and H. Handhajani, “Klasifikasi Citra Pigmen Kanker Kulit Menggunakan Convolutional Neural Network,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 379–385, Apr. 2021, doi: 10.29207/resti.v5i2.3001.

[10] A. S. Oktaria, E. Prakasa, and E. Suhartono, “Wood Species Identification using Convolutional Neural Network (CNN) Architectures on Macroscopic Images,” Journal of Information Technology and Computer Science, vol. 4, no. 3, pp. 274–283, Dec. 2019, doi: 10.25126/jitecs.201943155.

[11] M. Mentari, W. I. Sabilla, K. S. Batubulan, A. Latif, A. R. Fitriana, and Atmayanti, “Crowd Counting During a Pandemic to Find Out Community Response to Activity Restriction Policy Using Deep Learning,” in 2022 International Conference on Electrical and Information Technology (IEIT), IEEE, Sep. 2022, pp. 101–108. doi: 10.1109/IEIT56384.2022.9967905.

[12] A. Chaitanya, J. Shetty, and P. Chiplunkar, “Food Image Classification and Data Extraction Using Convolutional Neural Network and Web Crawlers,” Procedia Comput Sci, vol. 218, pp. 143–152, 2023, doi: 10.1016/j.procs.2022.12.410.

[13] L. Qiao, Y. Zhu, and H. Zhou, “Diabetic Retinopathy Detection Using Prognosis of Microaneurysm and Early Diagnosis System for Non-Proliferative Diabetic Retinopathy Based on Deep Learning Algorithms,” IEEE Access, vol. 8, pp. 104292–104302, 2020, doi: 10.1109/ACCESS.2020.2993937.

[14] R. Putra, H. Tjandrasa, and N. Suciati, “Severity Classification of Non-Proliferative Diabetic Retinopathy Using Convolutional Support Vector Machine,” International Journal of Intelligent Engineering and Systems, vol. 13, no. 4, pp. 156–170, Aug. 2020, doi: 10.22266/ijies2020.0831.14.

[15] D. J. Hemanth, O. Deperlioglu, and U. Kose, “RETRACTED ARTICLE: An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network,” Neural Comput Appl, vol. 32, no. 3, pp. 707–721, Feb. 2020, doi: 10.1007/s00521-018-03974-0.

[16] G. Alwakid, W. Gouda, and M. Humayun, “Enhancement of Diabetic Retinopathy Prognostication Using Deep Learning, CLAHE, and ESRGAN,” Diagnostics, vol. 13, no. 14, p. 2375, Jul. 2023, doi: 10.3390/diagnostics13142375.

[17] G. Alwakid, W. Gouda, and M. Humayun, “Deep Learning-Based Prediction of Diabetic Retinopathy Using CLAHE and ESRGAN for Enhancement,” Healthcare, vol. 11, no. 6, p. 863, Mar. 2023, doi: 10.3390/healthcare11060863.

[18] H. M. El-Hoseny, H. F. Elsepae, W. A. Mohamed, and A. S. Selmy, “Optimized Deep Learning Approach for Efficient Diabetic Retinopathy Classification Combining VGG16-CNN,” Computers, Materials & Continua, vol. 77, no. 2, pp. 1855–1872, 2023, doi: 10.32604/cmc.2023.042107.

[19] U. Ishtiaq, E. R. M. F. Abdullah, and Z. Ishtiaque, “A Hybrid Technique for Diabetic Retinopathy Detection Based on Ensemble-Optimized CNN and Texture Features,” Diagnostics, vol. 13, no. 10, p. 1816, May 2023, doi: 10.3390/diagnostics13101816.

[20] Y. Pamungkas, E. Triandini, W. Yunanto, and Y. Thwe, “Enhancing Diabetic Retinopathy Classification in Fundus Images using CNN Architectures and Oversampling Technique,” Journal of Robotics and Control (JRC), vol. 6, no. 1, pp. 413–425, Feb. 2025, doi: 10.18196/jrc.v6i1.25331.

[21] C.-H. Lee and Y.-H. Ke, “Fundus images classification for Diabetic Retinopathy using Deep Learning,” in 2021 The 13th International Conference on Computer Modeling and Simulation, New York, NY, USA: ACM, Jun. 2021, pp. 264–270. doi: 10.1145/3474963.3475849.

[22] M. Karthik and D. Sohier, “APTOS 2019 Blindness Detection,” Kaggle. Accessed: Jan. 15, 2025. [Online]. Available: https://kaggle.com/competitions/aptos2019-blindness-detection

[23] P. K. Jena, B. Khuntia, C. Palai, M. Nayak, T. K. Mishra, and S. N. Mohanty, “A Novel Approach for Diabetic Retinopathy Screening Using Asymmetric Deep Learning Features,” Big Data and Cognitive Computing, vol. 7, no. 1, p. 25, Jan. 2023, doi: 10.3390/bdcc7010025.

[24] I. Al-Kamachy, R. Hassanpour, and R. Choupani, “Classification of Diabetic Retinopathy using Pre-Trained Deep Learning Models,” Mar. 2024.

[25] S. Tang et al., “The effect of image resolution on convolutional neural networks in breast ultrasound,” Heliyon, vol. 9, no. 8, p. e19253, Aug. 2023, doi: 10.1016/j.heliyon.2023.e19253.

[26] S. Adhikari and S. P. Panday, “Image Enhancement Using Successive Mean Quantization Transform and Homomorphic Filtering,” in 2019 Artificial Intelligence for Transforming Business and Society (AITB), IEEE, Nov. 2019, pp. 1–5. doi: 10.1109/AITB48515.2019.8947437.

[27] K. Pyka, “Wavelet-Based Local Contrast Enhancement for Satellite, Aerial and Close Range Images,” Remote Sens (Basel), vol. 9, no. 1, p. 25, Jan. 2017, doi: 10.3390/rs9010025.

[28] X. Zhao, L. Wang, Y. Zhang, X. Han, M. Deveci, and M. Parmar, “A review of convolutional neural networks in computer vision,” Artif Intell Rev, vol. 57, no. 4, p. 99, Mar. 2024, doi: 10.1007/s10462-024-10721-6.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[30] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” Dec. 2015.

[31] A. A. S. Ali, “BRAIN TUMOR CLASSIFICATION USING A HYBRID DEEP LEARNING MODEL: LEVERAGING DENSENET121 AND INCEPTIONV2 ARCHITECTURES,” Electronic Journal of University of Aden for Basic and Applied Sciences, vol. 5, no. 4, pp. 455–463, Dec. 2024, doi: 10.47372/ejua-ba.2024.4.402.

[32] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” Jan. 2018.

[33] T. Mustaqim, P. H. Safitri, and D. Muhajir, “A Deep Learning Model Comparation for Diabetic Retinopathy Image Classification,” Scientific Journal of Informatics, vol. 12, no. 1, pp. 21–30, Apr. 2025, doi: 10.15294/sji.v12i1.20939.

[34] W. I. Sabilla, C. B. Vista, and D. S. Hormansyah, “Implementasi Multilayer Perceptron Untuk Memprediksi Harapan Hidup Pada Pasien Penyakit Kardiovaskular,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 6, no. 1, pp. 57–68, Mar. 2023.

Additional Files

Published

2025-11-21

Issue

Section

Articles

How to Cite

[1]
W. I. Sabilla, M. Hani'ah, A. R. T. H. Ririd, and A. R. Amalia, “Proliferative Diabetic Retinopathy Detection Using ConvolutionalNeural Network with Enhanced Retinal Image”, MATRIK, vol. 25, no. 1, pp. 161–172, Nov. 2025, doi: 10.30812/matrik.v25i1.4976.

Similar Articles

1-10 of 117

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)