Convolutional Neural Network With Batch Normalization for Classification of Emotional Expressions Based on Facial Images
DOI:
https://doi.org/10.30812/matrik.v21i1.1526Keywords:
Convolutional Neural Network, Batch Normalization, Classification, Emotional Expressions, Facial ImagesAbstract
Emotion recognition through facial images is one of the most challenging topics in human psychological interactions with machines. Along with advances in robotics, computer graphics, and computer vision, research on facial expression recognition is an important part of intelligent systems technology for interactive human interfaces where each person may have different emotional expressions, making it difficult to classify facial expressions and requires training data. large, so the deep learning approach is an alternative solution., The purpose of this study is to propose a different Convolutional Neural Network (CNN) model architecture with batch normalization consisting of three layers of multiple convolution layers with a simpler architectural model for the recognition of emotional expressions based on human facial images in the FER2013 dataset from Kaggle. The experimental results show that the training accuracy level reaches 98%, but there is still overfitting where the validation accuracy level is still 62%. The proposed model has better performance than the model without using batch normalization.
Downloads
References
[2] N. Meeki, A. Amine, M. A. Boudia, and N. Meeki, “Deep Learning for Non Verbal Sentiment Analysis : Facial Emotional Expressions,†in GeCoDe Laboratory, Department of Computer Science, Tahar Moulay University of Saida., 2020, vol. 3014, pp. 1–11.
[3] S. Agarwal, B. Santra, and D. P. Mukherjee, “Anubhav: recognizing emotions through facial expression,†Vis. Comput., vol. 34, no. 2, pp. 177–191, 2018.
[4] M. M and M. A, “Facial geometric feature extraction based emotional expression classification using machine learning algorithms,†PLoS One, vol. 16, no. 2, pp. 1–12, 2021.
[5] A. Hassouneh, A. M. Mutawa, and M. Murugappan, “Development of a Real-Time Emotion Recognition System Using Facial Expressions and EEG based on machine learning and deep neural network methods,†Informatics Med. Unlocked, vol. 20, p. 100372, 2020.
[6] M. Bedeloglu et al., “Image-based Analysis of Emotional Facial Expressions in Full Face Transplants,†J. Med. Syst., vol. 42, no. 3, pp. 1–10, 2018.
[7] Y. Lu, S. Wang, W. Zhao, and Y. Zhao, “WGAN-Based Robust Occluded Facial Expression Recognition,†IEEE Access, vol. 7, pp. 93594–93610, 2019.
[8] M. Magdin, L. Benko, and Š. Koprda, “A case study of facial emotion classification using affdex,†Sensors, vol. 19, no. 9, pp. 1–17, 2019.
[9] D. M. Watson, B. B. Brown, and A. Johnston, “A data-driven characterisation of natural facial expressions when giving good and bad news,†PLoS Comput. Biol., vol. 16, no. 10, pp. 1–13, 2020.
[10] F. Qin, J. Guo, and W. Sun, “Object-oriented ensemble classification for polarimetric SAR Imagery using restricted Boltzmann machines,†Remote Sens. Lett., vol. 8, no. 3, pp. 204–213, 2017.
[11] L. Duran-Lopez, J. P. Dominguez-Morales, A. F. Conde-Martin, S. Vicente-Diaz, and A. Linares-Barranco, “PROMETEO: A CNN-Based Computer-Aided Diagnosis System for WSI Prostate Cancer Detection,†IEEE Access, vol. 8, pp. 128613–128628, 2020.
[12] G. H. de Rosa and J. P. Papa, “Soft-Tempering Deep Belief Networks Parameters Through Genetic Programming,†J. Artif. Intell. Syst., vol. 1, no. 1, pp. 43–59, 2019.
[13] D. Hamester, P. Barros, and S. Wermter, “Face expression recognition with a 2-channel Convolutional Neural Network,†Proc. Int. Jt. Conf. Neural Networks, vol. 2015-Septe, no. July, pp. 1787–1794, 2015.
[14] A. George and S. Marcel, “Learning One Class Representations for Face Presentation Attack Detection Using Multi-Channel Convolutional Neural Networks,†IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 361–375, 2021.
[15] B. K. Triwijoyo, “Model Fast Tansfer Learning pada Jaringan Syaraf Tiruan Konvolusional untuk Klasifikasi Gender Berdasarkan Citra Wajah,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 18, no. 2, pp. 211–221, 2019.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Fitra Ahya Mubarok, Mohammad Reza Faisal, Dwi Kartini, Dodon Turianto Nugrahadi, Triando Hamonangan Saragih, Gender Classification of Twitter Users Using Convolutional Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Achmad Lukman, Wahju Tjahjo Saputro, Erni Seniwati, Improving Performance Convolutional Neural Networks Using Modified Pooling Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Siti Ummi Masruroh, Andrew Fiade, Muhammad Ikhsan Tanggok, Rizka Amalia Putri, Luigi Ajeng Pratiwi, Convolutional Neural Network for Colorization of Black and White Photos , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Miftahuddin Fahmi, Anton Yudhana, Sunardi Sunardi, Image Processing Using Morphology on Support Vector Machine Classification Model for Waste Image , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Rizky Hafizh Jatmiko, Yoga Pristyanto, Investigating The Effectiveness of Various Convolutional Neural Network Model Architectures for Skin Cancer Melanoma Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Heru Pramono Hadi, Eko Hari Rachmawanto, Rabei Raad Ali, Comparison of DenseNet-121 and MobileNet for Coral Reef Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Arief Hermawan, Adityo Permana Wibowo, Akmal Setiawan Wijaya, The Improvement of Artificial Neural Network Accuracy Using Principle Component Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Wahyu Styo Pratama, Didik Dwi Prasetya, Triyanna Widyaningtyas, Muhammad Zaki Wiryawan, Lalu Ganda Rady Putra, Tsukasa Hirashima, Performance Evaluation of Artificial Intelligence Models for Classification in Concept Map Quality Assessment , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Aini Suri Talita, Aristiawan Wiguna, Implementasi Algoritma Long Short-Term Memory (LSTM) Untuk Mendeteksi Ujaran Kebencian (Hate Speech) Pada Kasus Pilpres 2019 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Anthony Anggrawan, Analisis Deskriptif Hasil Belajar Pembelajaran Tatap Muka dan Pembelajaran Online Menurut Gaya Belajar Mahasiswa , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Lusiana Efrizoni, Sarjon Defit, Muhammad Tajuddin, Anthony Anggrawan, Komparasi Ekstraksi Fitur dalam Klasifikasi Teks Multilabel Menggunakan Algoritma Machine Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Anthony Anggrawan, Satuang Satuang, Mokhammad Nurkholis Abdillah, Sistem Pakar Diagnosis Penyakit Ayam Broiler Menggunakan Forward Chaining dan Certainty Factor , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Ahmat Adil, Bambang Krismono Triwijoyo, Sistem Informasi Geografis Pemetaan Jaringan Irigasi dan Embung di Lombok Tengah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Anthony Anggrawan, Mayadi Mayadi, Christofer Satria, Menentukan Akurasi Tata Letak Barang dengan Menggunakan Algoritma Apriori dan Algoritma FP-Growth , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Lalu Ganda Rady Putra, Anthony Anggrawan, Pengelompokan Penerima Bantuan Sosial Masyarakat dengan Metode K-Means , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Romi Choirudin, Ahmat Adil, Implementasi Rest Api Web Service dalam Membangun Aplikasi Multiplatform untuk Usaha Jasa , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Putu Tisna Putra, Anthony Anggrawan, Hairani Hairani, Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Anthony Anggrawan, Raisul Azhar, Bambang Krismono Triwijoyo, Mayadi Mayadi, Developing Application in Anticipating DDoS Attacks on Server Computer Machines , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Anthony Anggrawan, Mayadi Mayadi, Application of KNN Machine Learning and Fuzzy C-Means to Diagnose Diabetes , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)