Convolutional Neural Network With Batch Normalization for Classification of Emotional Expressions Based on Facial Images
DOI:
https://doi.org/10.30812/matrik.v21i1.1526Keywords:
Convolutional Neural Network, Batch Normalization, Classification, Emotional Expressions, Facial ImagesAbstract
Emotion recognition through facial images is one of the most challenging topics in human psychological interactions with machines. Along with advances in robotics, computer graphics, and computer vision, research on facial expression recognition is an important part of intelligent systems technology for interactive human interfaces where each person may have different emotional expressions, making it difficult to classify facial expressions and requires training data. large, so the deep learning approach is an alternative solution., The purpose of this study is to propose a different Convolutional Neural Network (CNN) model architecture with batch normalization consisting of three layers of multiple convolution layers with a simpler architectural model for the recognition of emotional expressions based on human facial images in the FER2013 dataset from Kaggle. The experimental results show that the training accuracy level reaches 98%, but there is still overfitting where the validation accuracy level is still 62%. The proposed model has better performance than the model without using batch normalization.
Downloads
References
[2] N. Meeki, A. Amine, M. A. Boudia, and N. Meeki, “Deep Learning for Non Verbal Sentiment Analysis : Facial Emotional Expressions,†in GeCoDe Laboratory, Department of Computer Science, Tahar Moulay University of Saida., 2020, vol. 3014, pp. 1–11.
[3] S. Agarwal, B. Santra, and D. P. Mukherjee, “Anubhav: recognizing emotions through facial expression,†Vis. Comput., vol. 34, no. 2, pp. 177–191, 2018.
[4] M. M and M. A, “Facial geometric feature extraction based emotional expression classification using machine learning algorithms,†PLoS One, vol. 16, no. 2, pp. 1–12, 2021.
[5] A. Hassouneh, A. M. Mutawa, and M. Murugappan, “Development of a Real-Time Emotion Recognition System Using Facial Expressions and EEG based on machine learning and deep neural network methods,†Informatics Med. Unlocked, vol. 20, p. 100372, 2020.
[6] M. Bedeloglu et al., “Image-based Analysis of Emotional Facial Expressions in Full Face Transplants,†J. Med. Syst., vol. 42, no. 3, pp. 1–10, 2018.
[7] Y. Lu, S. Wang, W. Zhao, and Y. Zhao, “WGAN-Based Robust Occluded Facial Expression Recognition,†IEEE Access, vol. 7, pp. 93594–93610, 2019.
[8] M. Magdin, L. Benko, and Š. Koprda, “A case study of facial emotion classification using affdex,†Sensors, vol. 19, no. 9, pp. 1–17, 2019.
[9] D. M. Watson, B. B. Brown, and A. Johnston, “A data-driven characterisation of natural facial expressions when giving good and bad news,†PLoS Comput. Biol., vol. 16, no. 10, pp. 1–13, 2020.
[10] F. Qin, J. Guo, and W. Sun, “Object-oriented ensemble classification for polarimetric SAR Imagery using restricted Boltzmann machines,†Remote Sens. Lett., vol. 8, no. 3, pp. 204–213, 2017.
[11] L. Duran-Lopez, J. P. Dominguez-Morales, A. F. Conde-Martin, S. Vicente-Diaz, and A. Linares-Barranco, “PROMETEO: A CNN-Based Computer-Aided Diagnosis System for WSI Prostate Cancer Detection,†IEEE Access, vol. 8, pp. 128613–128628, 2020.
[12] G. H. de Rosa and J. P. Papa, “Soft-Tempering Deep Belief Networks Parameters Through Genetic Programming,†J. Artif. Intell. Syst., vol. 1, no. 1, pp. 43–59, 2019.
[13] D. Hamester, P. Barros, and S. Wermter, “Face expression recognition with a 2-channel Convolutional Neural Network,†Proc. Int. Jt. Conf. Neural Networks, vol. 2015-Septe, no. July, pp. 1787–1794, 2015.
[14] A. George and S. Marcel, “Learning One Class Representations for Face Presentation Attack Detection Using Multi-Channel Convolutional Neural Networks,†IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 361–375, 2021.
[15] B. K. Triwijoyo, “Model Fast Tansfer Learning pada Jaringan Syaraf Tiruan Konvolusional untuk Klasifikasi Gender Berdasarkan Citra Wajah,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 18, no. 2, pp. 211–221, 2019.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Willy Riyadi, Jasmir Jasmir, Performance Prediction of Airport Traffic Using LSTM and CNN-LSTM Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Muhammad Ibnu Choldun Rachmatullah, The Application of Repeated SMOTE for Multi Class Classification on Imbalanced Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Muhammad Amirul Mukminin, Tio Dharmawan, Muhamad Arief Hidayat, Gender Classification Using Viola Jones, Orthogonal Difference Local Binary Pattern and Principal Component Analysis , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Dairoh Dairoh, Very Kurnia Bakti, Muhammad Naufal, Neural Network dan Particle Swam Optimization untuk Penunjang Keputusan Antipasi Mahasiswa Pra Lulus Bekerja Sesuai Bidang , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Helna Wardhana, I Made Yadi Dharma, Khairan Marzuki, Ibjan Syarif Hidayatullah, Implementation of Neural Machine Translation in Translating from Indonesian to Sasak Language , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Bobby Poerwanto, Fajriani Fajriani, Resilient Backpropagation Neural Network on Prediction of Poverty Levels in South Sulawesi , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- B. Herawan Hayadi, I Gede Iwan Sudipa, Agus Perdana Windarto, Model Peramalan Artificial Neural Network pada Peserta KB Aktif Jalur Pemerintahan menggunakan Artificial Neural Network Back-Propagation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Aris Tjahyanto, Faisal Johan Atletiko, Peningkatan Kinerja Pengklasifikasi Objek Bawah Laut dengan Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Agung Teguh Wibowo Almais, Cahyo Crysdian, Khadijah Fahmi Hayati Holle, Akbar Roihan, Smart Assessment menggunakan Backpropagation Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Ahmad Ashril Rizal, Siti Soraya, Multi Time Steps Prediction dengan Recurrent Neural Network Long Short Term Memory , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Anthony Anggrawan, Analisis Deskriptif Hasil Belajar Pembelajaran Tatap Muka dan Pembelajaran Online Menurut Gaya Belajar Mahasiswa , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Lusiana Efrizoni, Sarjon Defit, Muhammad Tajuddin, Anthony Anggrawan, Komparasi Ekstraksi Fitur dalam Klasifikasi Teks Multilabel Menggunakan Algoritma Machine Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Anthony Anggrawan, Satuang Satuang, Mokhammad Nurkholis Abdillah, Sistem Pakar Diagnosis Penyakit Ayam Broiler Menggunakan Forward Chaining dan Certainty Factor , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Ahmat Adil, Bambang Krismono Triwijoyo, Sistem Informasi Geografis Pemetaan Jaringan Irigasi dan Embung di Lombok Tengah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Anthony Anggrawan, Mayadi Mayadi, Christofer Satria, Menentukan Akurasi Tata Letak Barang dengan Menggunakan Algoritma Apriori dan Algoritma FP-Growth , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Lalu Ganda Rady Putra, Anthony Anggrawan, Pengelompokan Penerima Bantuan Sosial Masyarakat dengan Metode K-Means , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Romi Choirudin, Ahmat Adil, Implementasi Rest Api Web Service dalam Membangun Aplikasi Multiplatform untuk Usaha Jasa , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Putu Tisna Putra, Anthony Anggrawan, Hairani Hairani, Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Anthony Anggrawan, Raisul Azhar, Bambang Krismono Triwijoyo, Mayadi Mayadi, Developing Application in Anticipating DDoS Attacks on Server Computer Machines , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Anthony Anggrawan, Mayadi Mayadi, Application of KNN Machine Learning and Fuzzy C-Means to Diagnose Diabetes , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)