Forecasting the Number of Students in Multiple Linear Regressions
DOI:
https://doi.org/10.30812/matrik.v21i2.1348Keywords:
Big data, Data Mining, Multiple linear regressions, ForecastingAbstract
The most important element of higher education was students, therefore every university must continue to improve services in the future, and one of them was by using decision support. This case could be done by utilizing the University of Big Data. Predicting the number of prospective students in higher education was done by utilizing data mining and multiple linear regression approaches. By using 2 independent variables, namely administration costs (X1), accreditation score (X2), and the number of students who was registered each year as dependent variable (Y). For the test data, it used database for the last 13 years. By using multiple linear regression, the intercept value was sought and the coefficient of determination until the regression coefficient was obtained with the equation Y = 45.28 + -0.02.X1 + 121.58.X2, noted that if X2 was constant, the increasing of one unit was in X1 would have the effect of increasing -0.02 units on Y. Secondly, if X1 was constant, the increasing of one unit was in X2, would have the effect of increasing 121.58 units in Y. Thirdly, if X1 and X2 were equal to zero, the magnitude of Y was 45.28 units. Therefore, the proposed approach could be provided the acceptable predictive results.
Downloads
References
[2] B. Furht and F. Villanustre, “Big data technologies and applications,†Big Data Technol. Appl., pp. 1–400, 2016.
[3] R. Dautov and S. Distefano, “Quantifying volume, velocity, and variety to support (Big) data-intensive application development,†Proc. - 2017 IEEE Int. Conf. Big Data, Big Data 2017, vol. 2018-January, pp. 2843–2852, 2017.
[4] I. A. T. Hashem et al., “The role of big data in smart city,†Int. J. Inf. Manage., vol. 36, no. 5, pp. 748–758, 2016.
[5] T. M. Song and J. Song, “Prediction of risk factors of cyberbullying-related words in Korea: Application of data mining using social big data,†Telemat. Informatics, vol. 58, p. 101524, 2021.
[6] T. GajdoÅ¡Ãk, “Big Data Analytics in Smart Tourism Destinations. A New Tool for Destination Management Organizations?,†pp. 15–33, 2019.
[7] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and analytics,†Int. J. Inf. Manage., vol. 35, no. 2, pp. 137–144, 2015.
[8] D. Wang, X. Robert, and Y. Li, “China’s ‘Smart Tourism Destination’ Initiative : A Taste Of the Service-Dominant Logic,†J. Destin. Mark. Manag., vol. 2, no. 2, pp. 59–61, 2013.
[9] A. Yang, Y. Han, C.-S. Liu, J.-H. Wu, and D.-B. Hua, “D-TSVR Recurrence Prediction Driven by Medical Big Data in Cancer,†IEEE Trans. Ind. Informatics, vol. 3203, no. c, pp. 1–1, 2020.
[10] A. Dridi, M. M. Gaber, R. M. A. Azad, and J. Bhogal, “Scholarly data mining: A systematic review of its applications,†Wiley Interdiscip. Rev. Data Min. Knowl. Discov., no. October, pp. 1–23, 2020.
[11] Y. Ge and H. Wu, “Prediction of corn price fluctuation based on multiple linear regression analysis model under big data,†Neural Comput. Appl., vol. 32, no. 22, pp. 16843–16855, 2020.
[12] J. Hong, Z. Wang, W. Chen, L. Y. Wang, and C. Qu, “Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles,†J. Energy Storage, vol. 30, no. February, p. 101459, 2020.
[13] K. L. L. Khine and T. T. S. Nyunt, Predictive big data analytics using multiple linear regression model, vol. 744. Springer Singapore, 2019.
[14] X. Xu, Z. Sun, L. Wang, J. Fu, and C. Wang, “A Comparative Study of Customer Complaint Prediction Model of Time Series, Multiple Linear Regression and BP Neural Network,†J. Phys. Conf. Ser., vol. 1187, no. 5, 2019.
[15] F. Wang, Z. Shi, A. Biswas, S. Yang, and J. Ding, “Multi-algorithm comparison for predicting soil salinity,†Geoderma, vol. 365, no. February 2019, p. 114211, 2020.
[16] H. Rawashdeh et al., “Intelligent system based on data mining techniques for prediction of preterm birth for women with cervical cerclage,†Comput. Biol. Chem., vol. 85, no. February, p. 107233, 2020.
[17] Y. S. Lee, J. R. Wang, J. W. Zhan, and J. M. Zhang, “Data Mining Analysis of Overall Team Information Based on Internet of Things,†IEEE Access, vol. 8, pp. 41822–41829, 2020.
[18] C. N. Burger, T. L. Grobler, and W. Kleynhans, “Discrete Kalman Filter and Linear Regression Comparison for Vessel Coordinate Prediction,†Proc. - IEEE Int. Conf. Mob. Data Manag., vol. 2020-June, no. Mdm, pp. 269–274, 2020.
[19] Y. S. Kong, S. Abdullah, D. Schramm, M. Z. Omar, and S. M. Haris, “Development of multiple linear regression-based models for fatigue life evaluation of automotive coil springs,†Mech. Syst. Signal Process., vol. 118, pp. 675–695, 2019.
[20] Bochumer Institut für Technologie GmbH, Data Science - Data Science, no. September 2016. 2018.
[21] Liu, C., Jin, R., Gong, E., Liu, Y., Yue, M., “Prediction for the Performance of Gas Turbine Units Using Multiple Linear Regression,â€Proc.- Of the Chinese Society of Electrical Engineering., vol. 37, pp. 4731-4738, Aug 2017.
[22] X. Li, H. Dong, and S. Han, “Multiple Linear Regression with Kalman Filter for Predicting End Prices of Online Auctions,†2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Aug. 2020.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- M. Khairul Anam, Bunga Nanti Pikir, Muhammad Bambang Firdaus, Susi Erlinda, Agustin Agustin, Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen dan Pemeritah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Christofer Satria, Peter Wijaya Sugijanto, Anthony Anggrawan, I Nyoman Yoga Sumadewa, Aprilia Dwi Dayani, Rini Anggriani, Multi-Algorithm Approach to Enhancing Social Assistance Efficiency Through Accurate Poverty Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Ismail Husein, Rina Widyasari, Algorithm Symmetric 2-DLDA for Recognizing Handwritten Capital Letters , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Rizki Rino Pratama, Analisis Model Machine Learning Terhadap Pengenalan Aktifitas Manusia , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Ni Gusti Ayu Dasriani, Anthony Anggrawan, Pengembangan Sistem Aplikasi Cerdas Memprediksi Penjualan Mebel Berbasis website , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Pungkas Subarkah, Enggar Pri Pambudi, Septi Oktaviani Nur Hidayah, Perbandingan Metode Klasifikasi Data Mining untuk Nasabah Bank Telemarketing , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Supangat Supangat, Mohd Zainuri Bin Saringat, Mochamad Yovi Fatchur Rochman, Predicting Handling Covid-19 Opinion using Naive Bayes and TF-IDF for Polarity Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Anjar Wanto, Ni Luh Wiwik Sri Rahayu Ginantra, Surya Hendraputra, Ika Okta Kirana, Abdi Rahim Damanik, Optimization of Performance Traditional Back-propagation with Cyclical Rule for Forecasting Model , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Achmad Lukman, Wahju Tjahjo Saputro, Erni Seniwati, Improving Performance Convolutional Neural Networks Using Modified Pooling Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Jaka Tirta Samudra, Rika Rosnelly, Zakarias Situmorang, Comparative Analysis of SVM and Perceptron Algorithms in Classification of Work Programs , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Desi Vinsensia, Siskawati Amri, Jonhariono Sihotang, Hengki Tamando Sihotang, New Method for Identification and Response to Infectious Disease Patterns Based on Comprehensive Health Service Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Hengki Tamando Sihotang, Fristi Riandari, Pilisman Buulolo, Husain Husain, Sistem Pakar untuk Identifikasi Kandungan Formalin dan Boraks pada Makanan dengan Menggunakan Metode Certainty Factor , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Husain Husain, I Putu Hariyadi, Kurniadin Abd Latif, Galih Tri Aditya, Implementation of Port Knocking with Telegram Notifications to Protect Against Scanner Vulnerabilities , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Husain Husain, Pulung Nurtantio Andono, M. Arif Soeleman, Perspektif Baru Enterprise Architecture Pemerintahan Kota Mataram Berbasis TOGAF ADM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 2 (2017)
- Susandri susandri, Sarjon Defit, Fristi Riandari, Bosker Sinaga, Ekplorasi Timeline : Waktu Respon Pesan Terbaik WhatSapp Group “Gurauan kita STMIK Amik†, MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)