Convolutional Neural Network for Cataract Maturity Classification Based LeNet

  • Radimas Putra Muhammad Davi Labib Institut Teknologi Nasional, Malang
  • Sirojul Hadi Universitas Bumigora
  • Parama Diptya Widayaka Universitas Negeri Surabaya
  • Irmalia Suryani Faradisa Institut Teknologi Nasional, Malang
Keywords: CNN, Classification, Cataract Maturity, LeNet

Abstract

The eyes are one of the vital organs owned by humans. One of the common eye diseases is cataracts. This disease is characterized by clouding of the lens of the eye and can interfere with vision. Worst case, sufferers can experience blindness. Cataract maturity can be divided into four categories, namely incipient, immature, mature, and hypermature. Cataracts can be removed through surgery when the cataract is in the mature or hypermature phase. Cataract examination is usually done using a slit lamp. The lack of hospitals that have this equipment can cause delays in the healing process for cataract sufferers. This study created an image processing algorithm for the maturity classification process of cataracts using the Convolutional Neural Network method with LeNet network architecture. The algorithm that has been built is capable of classifying the maturity of cataracts with an accuracy rate of 93.33%

References

Agarap, A. F. (2018). Deep learning using rectified linear units (relu).arXiv preprint arXiv:1803.08375.Albawi, S., Mohammed, T. A. M., and Alzawi, S. (2017). Layers of A Convolutional Neural Network.Ieee, page 16. Astari, P. (2018). Katarak: Klasifikasi, Tatalaksana, dan Komplikasi Operasi.Cermin Dunia Kedokteran, 45(10):748–753.Atchison, D. A. (2018). Optics of The Human Eye.Encyclopedia of Modern Optics, 1-5:43–63.Bau, D., Zhu, J. Y., Strobelt, H., Lapedriza, A., Zhou, B., and Torralba, A. (2020). Understanding The Role of Individual Units in ADeep Neural Network.Proceedings of the National Academy of Sciences of the United States of America, 117(48):30071–30078.Gholamalinezhad, H. and Khosravi, H. (2020). Pooling Methods in Deep Neural Networks, A Review.Gifran, N. A., Magdalena, R., and Fuadah, R. Y. N. (2019). Klasifikasi Katarak Menggunakan Metode Discrete Wavelet Trans-form dan Support Vector Machine Classification of Cataract Using Discrete Wavelet Transform and Support Vector Machine.e-Proceeding of Engineering, 6(2):4170–4177.Hariyanto, R., Basuki, A., and Hasanah, R. N. (2016). Klasifikasi Penyakit Mata Katarak Berdasarkan Kelainan Patologis denganMenggunakan Algoritma Learning Vector Quantization.Jurnal Ilmiah NERO, 2(3):177–182.Harun, H. M., Abdullah, Z., and Salmah, U. (2020). Pengaruh Diabetes, Hipertensi, Merokok dengan Kejadian Katarak di BalaiKesehatan Mata Makassar.Jurnal Kesehatan Vokasional, 5(1):45.Kanai, S., Yamanaka, Y., Fujiwara, Y., and Adachi, S. (2018). Sigsof Tmax: Reanalysis of The Softmax Bottleneck.Advances inNeural Information Processing Systems, 2018-Decem(NeurIPS):286–296.Liu, G. and Guo, J. (2019). Bidirectional LSTM with Attention Mechanism and Convolutional Layer for Text Classification.Neuro-computing, 337:325–338.Purba, W., Aisyah, S., and Tamba, S. P. (2017). Perancangan Sistem Pakar Diagnosa Penyakit Mata Katarak Menggunakan KonsepMetode Runut Mundur.JUSIKOM PRIMA (Junal Sistem Informasi Ilmu Komputer Prima), 1(1).Risma, H. A., Patmasari, R., and Magdalena, R. (2019). Analisis Performansi Sistem Pendeteksi Katarak Menggunakan DCT (Discrete Cosine Transform ) dan Jaringan Saraf Tiruan Backpropagation ( Jst Backpropagation ).e-Proceeding of Engineering,6(1):364–371.Rongshi, D. and Yongming, T. (2019). Accelerator Implementation of Lenet-5 Convolution Neural Network Based on FPGA withHLS.3rd International Conference on Circuits, System and Simulation, ICCSS 2019, pages 64–67.Sawy, A. E., El-Bakry, H., and Loey, M. (2017). CNN for Handwritten Arabic Digits Recognition Based on LeNet-5.Advances inIntelligent Systems and Computing, 533:565–575.Suniantara, I. K. P., Suwardika, G., and Soraya, S. (2020). Peningkatan Akurasi Klasifikasi Ketidaktepatan Waktu Kelulusan Maha-siswa Menggunakan Metode Boosting Neural Network.Jurnal Varian, 3(2):95–102.Wang, T., Lu, C., Shen, G., and Hong, F. (2019). Sleep Apnea Detection From A Single-Lead ECG Signal with Automatic Feature-Extraction Through A Modified LeNet-5 Convolutional Neural Network.PeerJ, 2019(9):1–17.Wei, G., Li, G., Zhao, J., and He, A. (2019). Development of A LeNet-5 Gas Identification CNN Structure for Electronic Noses.Sensors (Switzerland), 19(1).Zhou, Y., Song, S., and Cheung, N. M. (2017). On Classification of Distorted Images with Deep Convolutional Neural Networks.ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, (January):1213–1217.
Published
2022-04-19
How to Cite
[1]
R. Labib, S. Hadi, P. Widayaka, and I. Faradisa, “Convolutional Neural Network for Cataract Maturity Classification Based LeNet”, Jurnal Varian, vol. 5, no. 2, pp. 97 - 106, Apr. 2022.
Section
Articles

Most read articles by the same author(s)

<< < 1 2