Analisis Model Machine Learning Terhadap Pengenalan Aktifitas Manusia
DOI:
https://doi.org/10.30812/matrik.v19i2.688Keywords:
Machine Learning, Linear Regression, SVM, Decision Tree, Linear SVCAbstract
Aktivitas-aktivitas manusia diklasifikasikan dengan menggunakan sensor responsif dari gerakan manusia yang disebut pengguna. Karya ilmiah ini berfokus pada penggunaan model klasifikasi pendekatan pembelajaran mesin yang berbeda. Dalam penelitian ini, data yang digunakan diambil dari open source yang diklasifikasikan untuk mengenali aktivitas manusia di mana percobaannya telah dilakukan dengan sekelompok 30 sukarelawan dalam berbagai kelompok usia. Setiap orang melakukan enam aktivitas mengenakan smartphone di bagian pinggang. Dengan menggunakan accelerometer dan gyroscope yang tertanam, ditangkap akselerasi linear 3-aksial dan kecepatan sudut 3-aksial pada kecepatan konstan 50Hz. Dataset yang diperoleh telah dipartisi secara acak menjadi dua set, di mana 70% sukarelawan dipilih untuk menghasilkan data training dan 30% untuk data uji. Hasil pendekatan yang digunakan dibandingkan dalam hal efisiensi akurasi dan presisi. Model yang digunakan adalah regresi logistik, linear SVC, rbf SVM classifier, decision tree, dan random forest.
Downloads
References
[2] J. H. Friedman, “Data Mining and Statistics: What’s the connection?,†Statistics (Ber)., 1997.
[3] S. Russell dan P. Norvig, Artificial Intelligence A Modern Approach Third Edition. 2010.
[4] M. Mohri, A. Rostamizadeh, dan A. Talwalkar, Foundations of Machine Learning (Adaptive Computation and Machine Learning series). 2012.
[5] T. Mitchell, Machine Learning. McGraw Hill, 1997.
[6] V. Roman, “Unsupervised Machine Learning: Clustering Analysis -- Towards Data Science,†Towar. Data Sci., 2019.
[7] D. A. Freedman, Statistical models: Theory and practice. 2009.
[8] H. J. Scudder, “Probability of Error of Some Adaptive Pattern-Recognition Machines,†IEEE Transactions on Information Theory. 1965, doi: 10.1109/TIT.1965.1053799.
[9] H. L. Seal, “Studies in the History of Probability and Statistics. XV: The Historical Development of the Gauss Linear Model,†Biometrika, 1967, doi: 10.2307/2333849.
[10] C. Cortes dan V. Vapnik, “Support-Vector Networks,†Mach. Learn., 1995, doi: 10.1023/A:1022627411411.
[11] L. Rokach dan O. Maimon, Data mining with decision trees : theroy and applications. 2008.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Ni Putu Nanik Hendayanti, Maulida Nurhidayati, Siti Soraya, Habib Ratu Perwira Negara, Community Purchase Decision Modeling in Bali with Non-Linier Methods , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Munirul Ula, Veri Ilhadi, Zailani Mohamed Sidek, Comparing Long Short-Term Memory and Random Forest Accuracy for Bitcoin Price Forecasting , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Ardi Mardiana, Ade Bastian, Ano Tarsono, Dony Susandi, Safari Yonasi, Optimized YOLOv8 Model for Accurate Detection and Quantificationof Mango Flowers , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Anthony Anggrawan, Analisis Deskriptif Hasil Belajar Pembelajaran Tatap Muka dan Pembelajaran Online Menurut Gaya Belajar Mahasiswa , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Anugerah Bagus Wijaya, Suliswaningsih Suliswaningsih, Argiyan Dwi Pritama, Meningkatkan Rasa Nasionalisme Siswa Melalui Game Base Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Erna Daniati, Sucipto Sucipto, Anita Sari Wardani, Akmal Hisyam Pradhana, Usability Test on the System Determination Decision Support ReleaseProduct Towards Contribution Level Decision Maker , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Angelina Ervina Jeanette Egeten, PENGARUH PEMBELAJARAN E-LEARNING DAN KEBIASAAN BELAJAR TERHADAP PENINGKATAN KOMPETENSI MAHASISWA PASCASARJANA PADA UNIVERSITAS BINA NUSANTARA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 2 (2017)
- Jihadil Qudsi S., Anthony Anggrawan, EVALUASI PRODUK PEMBELAJARAN MULTIMEDIA (PELIN) EVALUATION OF LEARNING MULTIMEDIA PRODUCT (PELIN) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 1 (2016)
- Tri Oktarina, Media Pembelajaran Online untuk Mendukung Belajar Pada Stebis Islam Darussalam , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Melinda Melinda, Zharifah Muthiah, Fitri Arnia, Elizar Elizar, Muhammad Irhmasyah, Image Data Acquisition and Classification of Vannamei Shrimp Cultivation Results Based on Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
You may also start an advanced similarity search for this article.
.png)











