Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo
DOI:
https://doi.org/10.30812/matrik.v19i1.529Keywords:
K-Means clustering, SIMR, Data Mining, ITAbstract
The use of information management systems that are owned by hospitals is still limited to being used only for the operation of daily patient service transactions and making reports only. The use of SIMRS is not optimal, it should pile the data stored in the database server can be used to generate new information if we dig deeper with the IT approach. This study uses data mining techniques with K-Means clustering method to cluster the patient's medical record data. The results of this study produce column 4 clusters consisting of districts, diagnoses of diseases, age and sex.The results of this study produce column 4 clusters consisting of districts, diagnoses of diseases, age and sex. Cluster 1 produced many patients consisting of 79(15%) female patients, Cluster 2 produced many patients consisting of 214(50%) male patients. Likewise Cluster 3 produced 89(17%) female patients. people and cluster 4 produced many patients consisting of 152(28%) female patients.The grouping of patient medical record data produces new information about the pattern of grouping of disease spread in each district based on the patient's medical record data from Anwar Medika Hospital as much as 534 data with a completion time of 0.06 seconds
Downloads
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Dwi Intan Af'idah, Dairoh Dairoh, Sharfina Febbi Handayani, Riszki Wijayatun Pratiwi, Susi Indah Sari, Sentimen Ulasan Destinasi Wisata Pulau Bali Menggunakan Bidirectional Long Short Term Memory , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Annisa’ul Mubarokah, Rita Ambarwati, Dedy Dedy, Mashhura Toirхonovna Alimova, Unsafe Conditions Identification Using Social Networks in Power Plant Safety Reports , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Ismarmiaty Ismarmiaty, Aditya Rizky, Sistem Pendukung Keputusan Perekrutan Karyawan PT. Cakra Mobilindo Menggunakan Metode Simple Additive Weighting , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Ahmad Fatoni Dwi Putra, Muhamad Nizam Azmi, Heri Wijayanto, Satria Utama, I Gede Putu Wirarama Wedashwara Wirawan, Optimizing Rain Prediction Model Using Random Forest and Grid Search Cross-Validation for Agriculture Sector , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Renita Fitriani, Muhammad Tajuddin, DESAIN SISTEM INFORMASI SEKOLAH BERBASIS ANDROID , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 1 (2016)
- Jelita Asian, Dimas Erlangga, Media Ayu, Data Exfiltration Anomaly Detection on Enterprise Networks using Deep Packet Inspection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Rizky Hafizh Jatmiko, Yoga Pristyanto, Investigating The Effectiveness of Various Convolutional Neural Network Model Architectures for Skin Cancer Melanoma Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Khasnur Hidjah, Helna Wardhana, Heroe Santoso, Anthony Anggrawan, SISTEM INFORMASI PEMANTAUAN STATUS GIZI BALITA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 2 (2016)
- Angga Rahagiyanto, Identifikasi Ekstraksi Fitur untuk Gerakan Tangan dalam Bahasa Isyarat (SIBI) Menggunakan Sensor MYO Armband , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Pardomuan Robinson Sihombing, Istiqomatul Fajriyah Yuliati, Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
You may also start an advanced similarity search for this article.