Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo
DOI:
https://doi.org/10.30812/matrik.v19i1.529Keywords:
K-Means clustering, SIMR, Data Mining, ITAbstract
The use of information management systems that are owned by hospitals is still limited to being used only for the operation of daily patient service transactions and making reports only. The use of SIMRS is not optimal, it should pile the data stored in the database server can be used to generate new information if we dig deeper with the IT approach. This study uses data mining techniques with K-Means clustering method to cluster the patient's medical record data. The results of this study produce column 4 clusters consisting of districts, diagnoses of diseases, age and sex.The results of this study produce column 4 clusters consisting of districts, diagnoses of diseases, age and sex. Cluster 1 produced many patients consisting of 79(15%) female patients, Cluster 2 produced many patients consisting of 214(50%) male patients. Likewise Cluster 3 produced 89(17%) female patients. people and cluster 4 produced many patients consisting of 152(28%) female patients.The grouping of patient medical record data produces new information about the pattern of grouping of disease spread in each district based on the patient's medical record data from Anwar Medika Hospital as much as 534 data with a completion time of 0.06 seconds
Downloads
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Ni Wayan Sumartini Saraswati, I Wayan Agustya Saputra, Sistem Monitoring Tekanan Air pada PDAM Gianyar Berbasis Web , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Akmal Setiawan Wijaya, Dhomas Hatta Fudholi, Ahmad R. Pratama, A computational approach in analyzing the empathy to online donations during COVID-19 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Cindy Ameilia Suhendra, Marsani Asfi, Widya Jati Lestari, Ilwan Syafrinal, Sistem Peramalan Persediaan Sparepart Menggunakan Metode Weight Moving Average dan Reorder Point , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Michelle Cantika Pontoan, Jay Idoan SIhotang, Erienika Lompoliu, Information Security Analysis of Online Education Management System using Information Technology Infrastructure Library Version 3 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Annisa Nurul Puteri, Arizal Arizal, Andini Dani Achmad, Feature Selection Correlation-Based pada Prediksi Nasabah Bank Telemarketing untuk Deposito , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Dinny Komalasari, Maria Ulfa, Pengujian Usability Heuristic Terhadap Perangkat Lunak Pembelajaran Matematika , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Heru Pramono Hadi, Eko Hari Rachmawanto, Rabei Raad Ali, Comparison of DenseNet-121 and MobileNet for Coral Reef Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Putu Tisna Putra, Anthony Anggrawan, Hairani Hairani, Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Neny Sulistianingsih, Galih Hendro Martono, Enhancing Predictive Models: An In-depth Analysis of Feature Selection Techniques Coupled with Boosting Algorithms , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Nurun Latifah, Ramaditia Dwiyansaputra, Gibran Satya Nugraha, Multiclass Text Classification of Indonesian Short Message Service (SMS) Spam using Deep Learning Method and Easy Data Augmentation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
You may also start an advanced similarity search for this article.