Detection of Rice Diseases using Leaf Images with Visual Geometric Group (VGG-19) Architecture and Different Optimizers
DOI:
https://doi.org/10.30812/matrik.v25i1.5286Keywords:
Detection of Rice Diseases, Different Optimizer, Leaf Image Detection, VGG-19 ArchitectureAbstract
Rice is a major food commodity in Indonesia that plays a vital role in maintaining national food security. However, rice productivity often declines due to pest and disease attacks, especially when the disease is not detected early. Currently, the process of identifying rice diseases is generally still carried out manually by farmers or experts through direct observation, which is subjective, time-consuming, and prone to identification errors. To overcome these limitations, a technology-based solution is needed that is able to detect rice diseases automatically, quickly, and accurately. This study aims to develop a rice disease detection system based on leaf images using a deep learning approach with the Visual Geometric Group (VGG-19) architecture. The research method used is experimental by comparing the performance of the VGG-19 architecture using three different types of optimizers, namely Adaptive Moment Estimation (ADAM), Root Mean Square Propagation (RMSProp), and Stochastic Gradient Descent (SGD), to obtain the best accuracy in rice disease classification. The findings show that the combination of VGG-19 with the ADAM optimizer produces the highest accuracy of 96.45%, followed by RMSProp at 95.96% and SGD at 87.08%. These findings indicate that the selection of optimizers plays an important role in improving the performance of deep learning models, especially in detecting rice diseases based on leaf images.
Downloads
References
[1] M. A. Azim, M. K. Islam, M. M. Rahman, and F. Jahan, “An effective feature extraction method for rice leaf disease classification,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 19, no. 2, pp. 463–470, 2021, doi: 10.12928/TELKOMNIKA.v19i2.16488.
[2] A. Islam, R. Islam, S. M. R. Haque, S. M. M. Islam, and M. A. I. Khan, “Rice Leaf Disease Recognition using Local Threshold Based Segmentation and Deep CNN,” Int. J. Intell. Syst. Appl., vol. 13, no. 5, pp. 35–45, 2021, doi: 10.5815/ijisa.2021.05.04.
[3] G. Latif, S. E. Abdelhamid, R. E. Mallouhy, J. Alghazo, and Z. A. Kazimi, “Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model,” Plants, vol. 11, no. 17, 2022, doi: 10.3390/plants11172230.
[4] D. J. Chaudhari and K. Malathi, “Detection and Prediction of Rice Leaf Disease Using a Hybrid CNN-SVM Model,” Opt. Mem. Neural Networks, vol. 32, no. 1, pp. 39–57, 2023, doi: 10.3103/S1060992X2301006X.
[5] A. Stephen, A. Punitha, and A. Chandrasekar, “Optimal deep generative adversarial network and convolutional neural network for rice leaf disease prediction,” Vis. Comput., vol. 40, no. 2, pp. 919–936, 2024, doi: 10.1007/s00371-023-02823-z.
[6] J. Lu, L. Tan, and H. Jiang, “Review on convolutional neural network (CNN) applied to plant leaf disease classification,” Agric., vol. 11, no. 8, pp. 1–18, 2021, doi: 10.3390/agriculture11080707.
[7] L. Yang et al., “GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases,” Comput. Electron. Agric., vol. 204, p. 107543, Jan. 2023, doi: 10.1016/j.compag.2022.107543.
[8] Abdul Aziz, Abdul Fadlil, and Tole Sutikno, “Optimization of Convolutional Neural Network (CNN) Using Transfer Learning for Disease Identification in Rice Leaf Images,” J. E-Komtek, vol. 8, no. 2, pp. 504–515, Dec. 2024, doi: 10.37339/e-komtek.v8i2.2132.
[9] M. T. Ahad, Y. Li, B. Song, and T. Bhuiyan, “Comparison of CNN-based deep learning architectures for rice diseases classification,” Artif. Intell. Agric., vol. 9, pp. 22–35, 2023, doi: 10.1016/j.aiia.2023.07.001.
[10] S. K. Upadhyay and A. Kumar, “A novel approach for rice plant diseases classification with deep convolutional neural network,” Int. J. Inf. Technol., vol. 14, no. 1, pp. 185–199, 2022, doi: 10.1007/s41870-021-00817-5.
[11] M. Aggarwal et al., “Pre-Trained Deep Neural Network-Based Features Selection Supported Machine Learning for Rice Leaf Disease Classification,” Agric., vol. 13, no. 5, 2023, doi: 10.3390/agriculture13050936.
[12] V. Rajpoot, A. Tiwari, and A. S. Jalal, “Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods,” Multimed. Tools Appl., vol. 82, no. 23, pp. 36091–36117, 2023, doi: 10.1007/s11042-023-14969-y.
[13] R. Yakkundimath, G. Saunshi, B. Anami, and S. Palaiah, “Classification of Rice Diseases using Convolutional Neural Network Models,” J. Inst. Eng. Ser. B, vol. 103, no. 4, pp. 1047–1059, 2022, doi: 10.1007/s40031-021-00704-4.
[14] C. Zhang, R. Ni, Y. Mu, Y. Sun, and T. L. Tyasi, “Lightweight Multi-scale Convolutional Neural Network for Rice Leaf Disease Recognition,” Comput. Mater. Contin., vol. 74, no. 1, pp. 983–994, 2023, doi: 10.32604/cmc.2023.027269.
[15] M. Agrawal and S. Agrawal, “Rice plant diseases detection using convolutional neural networks,” Int. J. Eng. Syst. Model. Simul., vol. 14, no. 1, p. 30, 2023, doi: 10.1504/IJESMS.2023.127396.
[16] A. S. Paymode and V. B. Malode, “Transfer Learning for Multi-Crop Leaf Disease Image Classification using Convolutional Neural Network VGG,” Artif. Intell. Agric., vol. 6, pp. 23–33, 2022, doi: 10.1016/j.aiia.2021.12.002.
[17] H. Hairani, T. Widiyaningtyas, D. D. Prasetya, and A. Aminuddin, “Addressing Imbalance in Health Datasets : A New Method NR-Clustering SMOTE and Distance Metric Modification,” Comput. Mater. Contin., vol. 82, no. 2, pp. 2931–2949, 2025, doi: 10.32604/cmc.2024.060837.
[18] H. Hairani, T. Widiyaningtyas, and D. Dwi Prasetya, “Addressing Class Imbalance of Health Data: A Systematic Literature Review on Modified Synthetic Minority Oversampling Technique (SMOTE) Strategies,” JOIV Int. J. Informatics Vis., vol. 8, no. 3, pp. 1310–1318, 2024, doi: https://dx.doi.org/10.62527/joiv.8.3.2283.
[19] A. I. Pradana and W. Wijiyanto, “Identifikasi Jenis Kelamin Otomatis Berdasarkan Mata Manusia Menggunakan Convolutional Neural Network (CNN) dan Haar Cascade Classifier,” G-Tech J. Teknol. Terap., vol. 8, no. 1, pp. 502–511, Jan. 2024, doi: 10.33379/gtech.v8i1.3814.
[20] E. C. Seyrek and M. Uysal, “A comparative analysis of various activation functions and optimizers in a convolutional neural network for hyperspectral image classification,” Multimed. Tools Appl., vol. 83, no. 18, pp. 53785–53816, Nov. 2023, doi: 10.1007/s11042-023-17546-5.
[21] S. Mandasari, D. Irfan, W. Wanayumini, and R. Rosnelly, “Comparison of Sgd, Adadelta, Adam Optimization in Gender Classification Using Cnn,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 9, no. 3, pp. 345–354, 2023, doi: 10.33330/jurteksi.v9i3.2067.
[22] A. R. K. P and S. Gowrishankar, “Hyperparameter Optimization in Transfer Learning for Improved Pathogen and Abiotic Plant Disease Classification,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 8, pp. 1119–1140, 2024.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Lalu Zazuli Azhar Mardedi, Fahry Fahry, Miftahul Madani, Hairani Hairani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
Similar Articles
- Miftahuddin Fahmi, Anton Yudhana, Sunardi Sunardi, Image Processing Using Morphology on Support Vector Machine Classification Model for Waste Image , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Nenny Anggraini, Zulkifli Zulkifli, Nashrul Hakiem, Development of Smart Charity Box Monitoring Robot in Mosque with Internet of Things and Firebase using Raspberry Pi , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Muhammad Furqan Nazuli, Muhammad Fachrurrozi, Muhammad Qurhanul Rizqie, Abdiansah Abdiansah, Muhammad Ikhsan, A Image Classification of Poisonous Plants Using the MobileNetV2 Convolutional Neural Network Model Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Jelita Asian, Dimas Erlangga, Media Ayu, Data Exfiltration Anomaly Detection on Enterprise Networks using Deep Packet Inspection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Husain Husain, Pulung Nurtantio Andono, M. Arif Soeleman, Perspektif Baru Enterprise Architecture Pemerintahan Kota Mataram Berbasis TOGAF ADM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 2 (2017)
- Ni Gusti Ayu Dasriani, Sirojul Hadi, Moch Syahrir, Intelligent System for Internet of Things-Based Building Fire Safety with Naive Bayes Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Ni Gusti Ayu Dasriani, Ria Rismayati, Architecture Enterprise Program Studi S1 Teknik Informatika dengan TOGAF Architecture Development Method (Studi Kasus : STMIK Bumigora Mataram) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
- sayuti rahman, Marwan Ramli, Arnes Sembiring, Muhammad Zen, Rahmad B.Y Syah, Normalization Layer Enhancement in Convolutional Neural Network for Parking Space Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Amir Ali, Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Lilik Widyawati, Imam Riadi, Yudi Prayudi, Comparative Analysis of Image Steganography using SLT, DCT and SLT-DCT Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Dyah Susilowati, Hairani Hairani, Indah Puji Lestari, Khairan Marzuki, Lalu Zazuli Azhar Mardedi, Segmentasi Lokasi Promosi Penerimaan Mahasiswa Baru Menggunakan Metode RFM dan K-Means Clustering , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Muhamad Azwar, Sri Winarni Sofya, Riwayati Malika, Hairani Hairani, Juvinal Ximenes Guterres, Combination Forward Chaining and Certainty Factor Methods for Selecting the Best Herbs to Support Independent Health , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Putu Tisna Putra, Anthony Anggrawan, Hairani Hairani, Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Donny Kurniawan, Anthony Anggrawan, Hairani Hairani, Graduation Prediction System on Students Using C4.5 Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Dadang Priyanto, Bambang Krismono Triwijoyo, Deny Jollyta, Hairani Hairani, Ni Gusti Ayu Dasriani, Data Mining Earthquake Prediction with Multivariate Adaptive Regression Splines and Peak Ground Acceleration , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Gibran Satya Nugraha, Hairani Hairani, Aplikasi Pemetaan Kualitas Pendidikan di Indonesia Menggunakan Metode K-Means , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 17 No. 2 (2018)
- Lalu Zazuli Azhar Mardedi, Khairan Marzuki, Rancang Bangun Jaringan Komputer LAN Berdasarkan Perbandingan Kinerja Routing Protokol EIGRP dan Routing Protokol OSPF , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Abdurraghib Segaf Suweleh, Dyah Susilowaty, Hairani Hairani, Khairan Marzuki, Penanganan Ketidak Seimbangan Kelas Menggunakan Pendekatan Level Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Lalu Zazuli Azhar Mardedi, Ariyanto Ariyanto, Analisa Kinerja System Gluster FS pada Proxmox VE untuk Menyediakan High Availability , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Lalu Zazuli Azhar Mardedi, Khairan Marzuki, Network MEMBANGUN JARINGAN KOMPUTER LAN BERDASARKAN PERBANDINGAN KINERJA PROTOKOL ENHANCED INTERIOR GATEWAY ROUTING PROTOCOL (EIGRP) DENGAN PROTOKOL OPEN SHORTEST PATH FIRST (OSPF) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
.png)











