Pengenalan Plat Kendaraan Bermotor dengan Menggunakan Metode Template Matching dan Deep Belief Network
DOI:
https://doi.org/10.30812/matrik.v19i1.475Keywords:
deep belief network, vehicle plat, template matching, python, identificationAbstract
The license plate of the vehicle is unique and is only owned by one vehicle per vehicle plate series, to make it easier for the police, especially the traffic police, to track traffic violators through the vehicle number plate. The Deep Belief Network algorithm works by processing the dataset through 3 stages, where the first layer is trained, the results of the first layer are then re-trained, and the results of the second layer calculation are made into the third layer count, the mean results on the calculation of the third layer become the result of learning Deep Belief Network then with the Template Matching algorithm, Deep Belief Network is assisted with the introduction of vehicle plates. In a study conducted using the DBN algorithm with the Template Matching method succeeded in recognizing a vehicle plate with a success percentage of 80% from 20 trials. The experiments carried out included plates that were not clearly seen. Failures that occur in the trials are generally due to under- or over-lighting on the vehicle plate.
Downloads
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Rakandhiya Daanii Rachmanto, Ahmad Naufal Labiib Nabhaan, Arief Setyanto, Deep Learning Model Compression Techniques Performance on Edge Devices , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Sri Suwarno, Erick Kurniawan, Multi-Level Pooling Model for Fingerprint-Based Gender Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Rizky Afrinanda, Lusiana Efrizoni, Wirta Agustin, Rahmiati Rahmiati, Hybrid Model for Sentiment Analysis of Bitcoin Prices using Deep Learning Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Desi Vinsensia, Siskawati Amri, Jonhariono Sihotang, Hengki Tamando Sihotang, New Method for Identification and Response to Infectious Disease Patterns Based on Comprehensive Health Service Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Hepatika Zidny Ilmadina, Muhammad Naufal, Dega Surono Wibowo, Drowsiness Detection Based on Yawning Using Modified Pre-trained Model MobileNetV2 and ResNet50 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Taufik Hidayat, Mohammad Ridwan, Muhamad Fajrul Iqbal, Sukisno Sukisno, Robby Rizky, William Eric Manongga, Determining Toddler's Nutritional Status with Machine Learning Classification Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Nella Rosa Sudianjaya, Chastine Fatichah, Segmentation and Classification of Breast Cancer Histopathological Image Utilizing U-Net and Transfer Learning ResNet50 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Miftahuddin Fahmi, Anton Yudhana, Sunardi Sunardi, Image Processing Using Morphology on Support Vector Machine Classification Model for Waste Image , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Abednego Dwi Septiadi, Luky Sufra Alfarizi, Pemanfaatan E-KTP Sebagai Alat Bantu Sistem Kehadiran Pegawai dalam Penanggulangan Penyebaran Covid-19 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Muhammad Rizki, Arief Hermawan, Donny Avianto, Learning Accuracy with Particle Swarm Optimization for Music Genre Classification Using Recurrent Neural Networks , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
You may also start an advanced similarity search for this article.
.png)











