Predicting Gen Z’s Sentiments on Gorontalo’s CulturalWisdom UsingSentiment Analysis Models
DOI:
https://doi.org/10.30812/matrik.v24i2.4591Keywords:
Dikili, Generation Z, Local Culture Gorontalo, Meeraji, Naive Bayes, Sentiment AnalysisAbstract
In the digital era, Generation Z faces both opportunities and challenges in understanding and preserving local cultural wisdom. It is essential to ensure that cultural values go beyond superficial consumption in cyberspace and remain deeply valued as integral aspects of identity and history. As technological advances and globalization continue influencing young people to preserve, local culture presents an increasing challenge. This study aims to determine Generation Z’s perceptions of Gorontalo’s local cultural wisdom, focusing on the Dikili and Meeraji traditions through a sentiment analysis approach. This research method uses the Naive Bayes algorithm to analyze positive, negative, and neutral sentiments derived from text data processed through a structured pre-processing stage. The findings reveal that Generation Z’s perceptions of the Dikili and Meeraji cultures are mostly positive, reflecting a strong appreciation and acceptance of these cultural values. However, the presence of negative sentiment highlights a critical view among some members of Generation Z, who consider certain aspects of these traditions less relevant or controversial in a modern context. In addition, neutral sentiment indicates a segment of young people who may need more exposure or information to form an informed opinion. The study concludes that while Dikili and Meeraji cultures still hold value among Generation Z, a more inclusive and adaptive approach to cultural preservation is needed. The findings offer valuable insights for strategies to preserve and develop local cultural heritage in the digital age.
Downloads
References
Culture: Taking Digital Media Art as an Example,†in Proceedings of the 4th International Conference on Art Studies: Science,
Experience, Education (ICASSEE 2020). Atlantis Press, 2020, pp. 578–582, https://doi.org/10.2991/assehr.k.200907.105.
[2] L. Lazzeretti, “What is the role of culture facing the digital revolution challenge? Some reflections for a research agenda,â€
vol. 30, no. 9, pp. 1617–1637, 2022-09-02, https://doi.org/10.1080/09654313.2020.1836133.
[3] A. Rahmawati, D. M. Astuti, F. H. Harun, and M. K. Rofiq, “Peran Media Sosial dalam Penguatan Moderasi Beragama di
Kalangan Gen-Z,†vol. 3, no. 5, pp. 905–920, 2023-10-02, https://doi.org/10.53625/jabdi.v3i5.6495.
[4] A. D. Murdani and H. Haqqi, “Penguatan Nilai Nasionalisme melalui Kearifan Lokal bagi Gen-Z sebagai Counter Hegemoni
Asing,†vol. 3, no. 4, pp. 236–242, 2023-12-20, https://doi.org/10.31004/jh.v3i4.366.
[5] L. Blandi, M. Sabbatucci, G. Dallagiacoma, F. Alberti, P. Bertuccio, and A. Odone, “Digital Information Approach through
Social Media among Gen Z and Millennials: The Global Scenario during the COVID-19 Pandemic,†vol. 10, no. 11, p. 1822,
2022-10-28, https://doi.org/10.3390/vaccines10111822.
[6] D. Malekpour Koupaei, T. Song, K. S. Cetin, and J. Im, “An assessment of opinions and perceptions of
smart thermostats using aspect-based sentiment analysis of online reviews,†vol. 170, p. 106603, 2020-03, https:
//doi.org/10.1016/j.buildenv.2019.106603.
[7] V. Gooljar, T. Issa, S. Hardin-Ramanan, and B. Abu-Salih, “Sentiment-based predictive models for online purchases in the era
of marketing 5.0: A systematic review,†vol. 11, no. 1, p. 107, 2024-08-05, https://doi.org/10.1186/s40537-024-00947-0.
[8] S. Thomas, Yuliana, and Noviyanti. P, “Study Analisis Metode Analisis Sentimen pada YouTube,†vol. 1, no. 1, pp. 1–7,
2021-03-02, https://doi.org/10.46229/jifotech.v1i1.201.
[9] A. A. Kharlamov and M. Pilgun, “Data Analytics for Predicting Situational Developments in Smart Cities: Assessing User
Perceptions,†vol. 24, no. 15, p. 4810, 2024-01, https://doi.org/10.3390/s24154810.
[10] R. A. Putri, N. A. A. Fitri, and S. Syamsir, “Pengaruh Globalisasi Digital terhadap Budaya di Sumatera Barat,†vol. 3, no. 9,
pp. 32–42, 2024-05-24, https://doi.org/10.6578/triwikrama.v3i9.3308.
[11] Redaksi, “Generasi z: Peran utama dalam era transformasi digital,†2024-04-10, https://langgam.id/
generasi-z-peran-utama-dalam-era-transformasi-digital/.
[12] W. B. Zulfikar, A. R. Atmadja, and S. F. Pratama, “Sentiment Analysis on Social Media Against Public Policy Using
Multinomial Naive Bayes,†vol. 10, no. 1, pp. 25–34, https://doi.org/10.15294/sji.v10i1.39952.
[13] Y. A. Singgalen, “Analisis SentimenWisatawan Melalui Data Ulasan Candi Borobudur di Tripadvisor Menggunakan Algoritma
Na¨ıve Bayes Classifier,†vol. 4, no. 3, 2022-12-26, https://doi.org/10.47065/bits.v4i3.2486.
[14] B. Liu, “Sentiment Analysis: Mining Opinions, Sentiments, and Emotions,†p. 431, 2020-10-15, https://books.google.co.id/
books/about/Sentiment Analysis.html?hl=id&id=PdX7DwAAQBAJ&redir esc=y.
[15] D. R. Daffa, D. Arthuro, J. A. Fernanda, and Muh. BintangWidya Pratama, “Gen-Z: Eksplorasi Identitas Budaya dan Tantangan
Sosial dalam Era Digital,†vol. 2, no. 2, pp. 169–183, 2024-05-08, https://doi.org/10.59581/jipsoshum-widyakarya.v2i2.3112.
[16] C. Ahmed, A. ElKorany, and E. ElSayed, “Prediction of customer’s perception in social networks by integrating sentiment
analysis and machine learning,†vol. 60, no. 3, pp. 829–851, 2023-06-01, https://doi.org/10.1007/s10844-022-00756-y.
[17] J.-Y. Huang, C.-L. Tung, and W.-Z. Lin, “Using Social Network Sentiment Analysis and Genetic Algorithm to
Improve the Stock Prediction Accuracy of the Deep Learning-Based Approach,†vol. 16, no. 1, p. 93, 2023-05-29,
https://doi.org/10.1007/s44196-023-00276-9.
[18] P. Savci and B. Das, “Prediction of the customers’ interests using sentiment analysis in e-commerce data for comparison of
Arabic, English, and Turkish languages,†vol. 35, no. 3, pp. 227–237, 2023-03, https://doi.org/10.1016/j.jksuci.2023.02.017.
[19] R. Singh and R. Singh, “Applications of sentiment analysis and machine learning techniques in disease outbreak prediction –
A review,†vol. 81, pp. 1006–1011, 2023, https://doi.org/10.1016/j.matpr.2021.04.356.
[20] R. L. Mustofa and B. Prasetiyo, “Sentiment analysis using lexicon-based method with naive bayes classifier algorithm on
#newnormal hashtag in twitter,†vol. 1918, no. 4, p. 042155, 2021-06-01, https://doi.org/10.1088/1742-6596/1918/4/042155.
[21] D. A. Kristiyanti, D. A. Putri, E. Indrayuni, A. Nurhadi, and A. H. Umam, “E-Wallet Sentiment Analysis Using Na¨ıve Bayes
and Support Vector Machine Algorithm,†in Journal of Physics: Conference Series, vol. 1641, no. 1. IOP Publishing, 2020, p.
12079, https://doi.org/10.1088/1742-6596/1641/1/012079.
[22] G. Gupta, S. Khan, V. Guleria, A. Almjally, B. I. Alabduallah, T. Siddiqui, B. M. Albahlal, S. A. Alajlan, and M. AL-subaie,
“DDPM: A Dengue Disease Prediction and Diagnosis Model Using Sentiment Analysis and Machine Learning Algorithms,â€
vol. 13, no. 6, p. 1093, 2023-03-14, https://doi.org/10.3390/diagnostics13061093.
[23] W. Gu, Y. Zhong, S. Li, C. Wei, L. Dong, Z. Wang, and C. Yan, “Predicting Stock Prices with FinBERT-LSTM: Integrating
News Sentiment Analysis,†in Proceedings of the 2024 8th International Conference on Cloud and Big Data Computing,
2024-08-15, pp. 67–72, https://doi.org/10.1145/3694860.3694870.
[24] Y. A. Sanjaya, D. Safitri, and S. Sujarwo, “Integrasi nilai-nilai kearifan lokal dalam pengembangan pendidikan karakter di era
4.0,†vol. 1, no. 2, pp. 3007–3013, 2024. https://jicnusantara.com/index.php/jicn/article/view/331
[25] N. K. N. Sari, N. K. V. S. Dewi, N. L. G. P. Maharani, N. K. G. P. Sari, D. A. M. D. Anggita, and B. R. Werang, “Membangun
Generasi Digital Bijak dan Berbudaya: Intergrasi Kearifan Lokal Bali dalam Pembelajaran Literasi Digital di SDN 5 Sudaji,â€
vol. 2, no. 3, pp. 177–194, 2024-06-14, https://doi.org/10.55927/cjas.v2i3.9717.
[26] S. Rahman, “Kearifan Lokal Huyula Masyarakat Gorontalo sebagai Media Pendidikan Anti Korupsi,†vol. 10, no. 2, pp.
148–159, 2022-09-08, https://doi.org/10.30603/tjmpi.v10i2.2792.
[27] A. Faiz and B. Soleh, “Implementasi Pendidikan Karakter Berbasis Kearifan Lokal,†vol. 7, no. 1, pp. 68–77, 2021-05-22,
https://doi.org/10.22219/jinop.v7i1.14250.
[28] S. A. Helmayanti, F. Hamami, and R. Y. Fa’rifah, “Penerapan Algoritma TF-IDF dan Na¨ıve Bayes Untuk Analisis
Sentimen Berbasis Aspek Ulasan Aplikasi Flip Pada Google Play Store,†vol. 4, no. 3, pp. 1822–1834, 2023-09-10,
https://doi.org/10.35870/jimik.v4i3.415.
[29] D. Pramudita, Y. Akbar, and T. Wahyudi, “Analisis Sentimen Terhadap Program Kartu Indonesia Pintar Kuliah
pada Media Sosial X Menggunakan Algoritma Naive Bayes: Sentiment Analysis of the Indonesian Smart College
Card Program on Social Media X Using the Naive Bayes Algorithm,†vol. 4, no. 4, pp. 1420–1430, 2024-08-05,
https://doi.org/10.57152/malcom.v4i4.1565.
[30] T. I. Alfawas, A. Rahim, and R. Rudiman, “Penerapan Fitur Ekstraksi TF-IDF untuk Analisis Sentimen Ulasan
Game Bus Simulator Indonesia dengan Algoritma Naive Bayes,†vol. 4, no. 5, pp. 3177–3193, 2024, https:
//doi.org/10.31004/innovative.v4i5.13975.
[31] G. H. A. R. Noer, “Implementasi agoritma na¨ıve bayes dan tf-idf dalam analisis sentimen data ulasan (studi kasus :
Ulasan review aplikasi e-commerce shopee di situs google playstore,†2023-04-04, https://repository.uinjkt.ac.id/dspace/handle/
123456789/68747.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hermila A., Rahmat Taufik R. L Bau, Sitti Suhada, Abdulaziz Ahmed siyad

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
Similar Articles
- Eko Prasetyo, Muhammad Faris Al-Adni, Rahmawati Febrifyaning Tias, Classification of Cash Direct Recipients Using the Naive Bayes with Smoothing , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Frans Mikael Sinaga, Sio Jurnalis Pipin, Sunaryo Winardi, Karina Mannita Tarigan, Ananda Putra Brahmana, Analyzing Sentiment with Self-Organizing Map and Long Short-Term Memory Algorithms , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Nurdin Nurdin, Erni Susanti, Hafizh Al-Kautsar Aidilof, Dadang Priyanto, Comparison of Naive Bayes and Dempster Shafer Methods in Expert System for Early Diagnosis of COVID-19 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Rahman Rahman, Teguh Iman Hermanto, Meriska Defriani, Hyperparamaters Fine Tuning for Bidirectional Long Short Term Memory on Food Delivery , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Christofer Satria, Peter Wijaya Sugijanto, Anthony Anggrawan, I Nyoman Yoga Sumadewa, Aprilia Dwi Dayani, Rini Anggriani, Multi-Algorithm Approach to Enhancing Social Assistance Efficiency Through Accurate Poverty Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Putri Jafar, Dolly Indra, Fitriyani Umar, Color Feature Extraction for Grape Variety Identification: Naïve Bayes Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- M. Khairul Anam, Bunga Nanti Pikir, Muhammad Bambang Firdaus, Susi Erlinda, Agustin Agustin, Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen dan Pemeritah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Dimas Afryzal Hanan, Ario Yudo Husodo, Regania Pasca Rassy, Sentiment Study of ChatGPT on Twitter Data with Hybrid K-Means and LSTM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Rizky Afrinanda, Lusiana Efrizoni, Wirta Agustin, Rahmiati Rahmiati, Hybrid Model for Sentiment Analysis of Bitcoin Prices using Deep Learning Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
You may also start an advanced similarity search for this article.