Enhancing Lung Cancer Prediction Accuracy UsingQuantum-Enhanced K-Medoids with Manhattan Distance
DOI:
https://doi.org/10.30812/matrik.v24i3.4190Keywords:
Clustering, data mining, K-Medoids, Manhattan Distance, Quantum Bit, Quantum ComputingAbstract
Lung cancer is a leading cause of cancer-related deaths worldwide, and early detection plays a crucial
role in improving treatment outcomes. This study proposes an enhancement of the K-Medoids clustering
method by integrating a quantum computing approach using Manhattan distance to improve
prediction accuracy for lung cancer diagnosis. The research was conducted using a publicly available
lung cancer dataset consisting of 309 patient records with 14 diagnostic attributes. Comparative experiments
were carried out between the classical K-Medoids and the quantum-enhanced K-Medoids, with
performance evaluated based on clustering accuracy, precision, recall, and F1-score. The results show
that the quantum-based method has the same accuracy as the classical method, namely 88%. This
suggests that quantum-based clustering can match the accuracy of classical methods after adequate
training, although consistency and parameter stability remain areas for further refinement. Further
research is recommended to test the model on larger datasets and to explore real-world deployment in
clinical decision support systems.
Downloads
References
[1] Y.-M. Li, H.-L. Liu, S.-J. Pan, S.-J. Qin, F. Gao, D.-X. Sun, and Q.-Y. Wen, “Quantum k -medoids algorithm using parallel
amplitude estimation,” Physical Review A, vol. 107, no. 2, p. 022421, Feb. 2023, https://doi.org/10.1103/PhysRevA.107.022421.
[2] N. Gao, D. Li, A. Mishra, J. Yan, K. Simonov, and G. Chiribella, “Measuring Incompatibility and Clustering Quantum Ob-servables with a Quantum Switch,” Physical Review Letters, vol. 130, no. 17, p. 170201, Apr. 2023, https://doi.org/10.1103/
PhysRevLett.130.170201.
[3] K. Hulliyah and S. Solikhun, “Q-Madaline: Madaline Based On Qubit,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi),
vol. 7, no. 5, pp. 1003–1008, Aug. 2023, https://doi.org/10.29207/resti.v7i5.5080.
[4] J. L. Pereira, L. Banchi, and S. Pirandola, “Quantum-Enhanced Cluster Detection in Physical Images,” Physical Review Applied,
vol. 19, no. 5, p. 054031, May 2023, https://doi.org/10.1103/PhysRevApplied.19.054031.
[5] N. Piatkowski, T. Gerlach, R. Hugues, R. Sifa, C. Bauckhage, and F. Barbaresco, “Towards Bundle Adjustment for Satellite
Imaging via Quantum Machine Learning,” in 2022 25th International Conference on Information Fusion (FUSION).
Link¨oping, Sweden: IEEE, Jul. 2022, pp. 1–8, https://doi.org/10.23919/FUSION49751.2022.9841388.
[6] L. Zahrotun, U. Linarti, B. H. T. Suandi As, H. Kurnia, and L. Y. Sabila, “Comparison of K-Medoids Method and Analytical
Hierarchy Clustering on Students’ Data Grouping,” JOIV : International Journal on Informatics Visualization, vol. 7, no. 2, p.
446, May 2023, https://doi.org/10.30630/joiv.7.2.1204.
[7] S. Al-Otaibi, V. Cherappa, T. Thangarajan, R. Shanmugam, P. Ananth, and S. Arulswamy, “Hybrid K-Medoids with Energy-
Efficient Sunflower Optimization Algorithm for Wireless Sensor Networks,” Sustainability, vol. 15, no. 7, p. 5759, Mar. 2023,
https://doi.org/10.3390/su15075759.
[8] F. Faisal, L. A. G. Giopani, M. F. Fitriah, Z. C. D. Dwynne, S. S. H. Helma, and M. Mustakim, “Perbandingan Algoritma
K-Means dan K-Medoids Untuk Pengelompokan Suhu di Provinsi Riau: Comparison of K-Means and K-Medoids Algorithms
for Temperature Grouping in Riau Province,” Indonesian Journal of Informatic Research and Software Engineering (IJIRSE),
vol. 2, no. 2, pp. 128–134, Sep. 2022, https://doi.org/10.57152/ijirse.v2i2.434.
[9] S. Samudi, S.Widodo, and H. Brawijaya, “The K-Medoids Clustering Method for Learning Applications during the COVID-19
Pandemic,” SinkrOn, vol. 5, no. 1, p. 116, Oct. 2020, https://doi.org/10.33395/sinkron.v5i1.10649.
[10] Z.Wu, L. Jin, J. Zhao, L. Jing, and L. Chen, “Research on Segmenting E-Commerce Customer through an Improved K-Medoids
Clustering Algorithm,” Computational Intelligence and Neuroscience, vol. 2022, pp. 1–10, Jun. 2022, https://doi.org/10.1155/
2022/9930613.
[11] Mustakim, M. Z. Fauzi, Mustafa, A. Abdullah, and Rohayati, “Clustering of Public Opinion on Natural Disasters in Indonesia
Using DBSCAN and K-Medoids Algorithms,” Journal of Physics: Conference Series, vol. 1783, no. 1, p. 012016, Feb. 2021,
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Solikhun Solikhun, Lise Pujiastuti, Mochamad Wahyudi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
Similar Articles
- Achmad Lukman, Wahju Tjahjo Saputro, Erni Seniwati, Improving Performance Convolutional Neural Networks Using Modified Pooling Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Lathifatul Mahabbati, Andy Hidayat Jatmika, Raphael Bianco Huwae, Reducing Transmission Signal Collisions on Optimized Link State Routing Protocol Using Dynamic Power Transmission , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Ahmad Naufal Labiib Nabhaan, Rakandhiya Daanii Rachmanto, Arief Setyanto, Characterizing Hardware Utilization on Edge Devices when Inferring Compressed Deep Learning Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Gibran Satya Nugraha, Hairani Hairani, Aplikasi Pemetaan Kualitas Pendidikan di Indonesia Menggunakan Metode K-Means , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 17 No. 2 (2018)
- Anthony Anggrawan, Dwi Kurnianingsih, Christofer Satria, Sistem Aplikasi Cerdas Klasterisasi Penerima Bantuan Covid-19 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Hety Handayani Hidayat, Ardiansyah Ardiansyah, Poppy Arsil, Laras Isna Rahmawati, Pemetaan Kata Kunci dan Polaritas Sentimen Pengguna Twitter Terhadap Kehalalan Produk , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Virdiana Sriviana Fatmawaty, Imam Riadi, Herman Herman, Higher Education Institution Clustering Based on Key Performance Indicators using Quartile Binning Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Imam Riadi, Herman Herman, Fitriah Fitriah, Suprihatin Suprihatin, Optimizing Inventory with Frequent Pattern Growth Algorithm for Small and Medium Enterprises , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Ismail Husein, Rina Widyasari, Algorithm Symmetric 2-DLDA for Recognizing Handwritten Capital Letters , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Suwardi Annas, Bobby Poerwanto, Sapriani Sapriani, Muhammad Fahmuddin S, Implementation of K-Means Clustering on Poverty Indicators in Indonesia , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Relita Buaton, Solikhun Solikhun, Application of Numerical Measure Variations in K-Means Clustering for Grouping Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Firmansyah Firmansyah, Mochamad Wahyudi, Analisis Performa Access Control List Menggunakan Metode Firewall Policy Base , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Mochamad Wahyudi, Firmansyah Firmansyah, Analisis Performa Open Shortest Path First Load Balancing dengan Metode Cost Manipulation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
.png)











