Identify the Condition of Corn Plants Using Gray Level Co-occurrence Matrix and Bacpropagation
DOI:
https://doi.org/10.30812/matrik.v24i2.4035Keywords:
Corn Plant Diseases., Machine Learning, Artificial Neural Networks., Backpropagation, Gray Level Co-occurrence MatrixAbstract
This research aims to increase the accuracy of identifying the condition of corn plants based on leaf features using the GLCM and ANN Backpropagation methods. The GLCM method is used to extract features from corn leaf images, while Backpropagation ANN is used to classify the condition of corn plants based on these features. This classification was carried out using a dataset of corn leaves from four different conditions, namely healthy, leaf-spot, leaf-blight, and leaf-rust. Next, leaf features are extracted using the GLCM method. After that, data normalization was carried out, balancing the dataset, and training was carried out on the Backpropagation ANN model to classify the condition of the corn plants. After training the model, the next model evaluation is carried out using the confusion matrix method. The research results show that the method used can produce quite high accuracy when identifying the condition of corn plants, with an accuracy of 99%. This shows that the use of GLCM and ANN Backpropagation can be a good alternative in identifying the condition of corn plants. This research provides benefits in making it easier to accurately identify the condition of corn plants.
Downloads
References
[2] pertanian, “budidaya jagung.†[online]. Available: https://pertanian.ngawikab.go.id/2022/08/08/budidaya-jagung/
[3] m. A. Suparlan, nurali, edi wati, “pengendalian terpadu hama utama tanaman jagung (zea mays, l) di lahan kering.†[online]. Available: http://cybex.pertanian.go.id/mobile/artikel/100282/pengendalian-terpadu-hama-utama-tanaman-jagung-zea-mays-l-di-lahan-kering/
[4] tajuddin bantacut, muammar tawaruddin akbar, and yasser redin firdaus, “pengembangan jagung untuk ketahanan pangan, industri dan ekonomi,†2015.
[5] koesrini, “teknologi budidaya jagung di lahan rawa.†2016. [online]. Available: http://balittra.litbang.pertanian.go.id/index.php?option=com_content&view=article&id=1823&itemid=10
[6] f. Afandi, “penyakit jagung dan cara mengatasinya.†[online]. Available: http://cybex.pertanian.go.id/mobile/artikel/74692/penyakit-jagung-dan-cara-mengatasinya/
[7] k. Pertanian, “analisis kinerja perdagangan jagung,†pusat data dan sistem informasi pertanian sekretariat jenderal kementerian pertanian 2021, pp. 5–24, 2021.
[8] p. Semitera, “abstrak seminar nasional teknologi terapan (semitera) 2021,†seminar teknologi terapan, 2021, [online]. Available: https://prosiding.polindra.ac.id/index.php/semitera/article/download/64/1
[9] k. Saputra s and m. I. Perangin-angin, “klasifikasi tanaman obat berdasarkan ekstraksi fitur morfologi daun menggunakan jaringan syaraf tiruan,†jurnal informatika, vol. 5, no. 2, pp. 169–174, 2018, doi: 10.31311/ji.v5i2.3770.
[10] d. Iswantoro and d. Handayani un, “klasifikasi penyakit tanaman jagung menggunakan metode convolutional neural network (cnn),†jurnal ilmiah universitas batanghari jambi, vol. 22, no. 2, p. 900, 2022, doi: 10.33087/jiubj.v22i2.2065.
[11] m. Sibiya and m. Sumbwanyambe, “automatic fuzzy logic-based maize common rust disease severity predictions with thresholding and deep learning,†pathogens, vol. 10, no. 2, pp. 1–17, 2021, doi: 10.3390/pathogens10020131.
[12] a. K. S. & s. C. M. Kshyanaprava panda panigrahi, himansu das, “maize leaf disease detection and classification using machine learning algorithms,†progress in computing, analytics and networking, vol. Volume 111, 2020, [online]. Available: https://link.springer.com/chapter/10.1007/978-981-15-2414-1_66
[13] i. Pratama putra and d. Alamsyah, “klasifikasi penyakit daun jagung menggunakan metode convolutional neural network,†jurnal algoritme, vol. 2, no. 2, pp. 102–112, 2022, [online]. Available: https://www.kaggle.com/qramkrishna/corn-leaf-infection-dataset
[14] q. N. Azizah, “klasifikasi penyakit daun jagung menggunakan metode convolutional neural network alexnet,†sudo jurnal teknik informatika, vol. 2, no. 1, pp. 28–33, feb. 2023, doi: 10.56211/sudo.v2i1.227.
[15] a. Neardiaty, “klasifikasi hama dan penyakit tanaman jagung menggunakan metode fuzzy random forest berdasarkan resampling repeated k-fold cross validation,†2022, [online]. Available: https://repository.unsri.ac.id/76903/
[16] ainani shabrina febrianti, tri arief sardjono, and atar fuady babgei, “klasifikasi tumor otak pada citra magnetic resonance image dengan menggunakan metode support vector machine,†jurnal teknik its, 2020.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Miftahuddin Fahmi, Anton Yudhana, Sunardi Sunardi, Image Processing Using Morphology on Support Vector Machine Classification Model for Waste Image , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Faisal Reza Pradhana, Ilham Mufandi, Aziz Musthafa, Dian Afif Arifah, Khairul Munzilin Al Kahfi, Implementation of Conversational Artificial Intelligence in a3-Dimensional Game onWaste Impact , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Aditya Dwi Putro, Arief Hermawan, Pengaruh Cahaya dan Kualitas Citra dalam Klasifikasi Kematangan Pisang Cavendish Berdasarkan Ciri Warna Menggunakan Artificial Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Cherfly Kaope, Yoga Pristyanto, The Effect of Class Imbalance Handling on Datasets Toward Classification Algorithm Performance , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Gallen cakra adhi wibowo, Sri Yulianto Joko Prasetyo, Irwan Sembiring, Tsunami Vulnerability and Risk Assessment in Banyuwangi District using machine learning and Landsat 8 image data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Bambang Krismono Triwijoyo, Ahmat Adil, Anthony Anggrawan, Convolutional Neural Network With Batch Normalization for Classification of Emotional Expressions Based on Facial Images , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Aini Suri Talita, Aristiawan Wiguna, Implementasi Algoritma Long Short-Term Memory (LSTM) Untuk Mendeteksi Ujaran Kebencian (Hate Speech) Pada Kasus Pilpres 2019 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Sucipto Sucipto, Didik Dwi Prasetya, Triyanna Widiyaningtyas, Educational Data Mining: Multiple Choice Question Classification in Vocational School , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Darwan Darwan, Penggunaan Jaringan Syaraf Tiruan dan Wavelet Pada Citra EKG 12 Lead , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Fatur Rahman Harahap, Anggun Fitrian Isnawati, Khoirun Ni'amah, Variation of Distributed Power Control Algorithm in Co-Tier Femtocell Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
You may also start an advanced similarity search for this article.