Identify the Condition of Corn Plants Using Gray Level Co-occurrence Matrix and Bacpropagation
DOI:
https://doi.org/10.30812/matrik.v24i2.4035Keywords:
Corn Plant Diseases., Machine Learning, Artificial Neural Networks., Backpropagation, Gray Level Co-occurrence MatrixAbstract
This research aims to increase the accuracy of identifying the condition of corn plants based on leaf features using the GLCM and ANN Backpropagation methods. The GLCM method is used to extract features from corn leaf images, while Backpropagation ANN is used to classify the condition of corn plants based on these features. This classification was carried out using a dataset of corn leaves from four different conditions, namely healthy, leaf-spot, leaf-blight, and leaf-rust. Next, leaf features are extracted using the GLCM method. After that, data normalization was carried out, balancing the dataset, and training was carried out on the Backpropagation ANN model to classify the condition of the corn plants. After training the model, the next model evaluation is carried out using the confusion matrix method. The research results show that the method used can produce quite high accuracy when identifying the condition of corn plants, with an accuracy of 99%. This shows that the use of GLCM and ANN Backpropagation can be a good alternative in identifying the condition of corn plants. This research provides benefits in making it easier to accurately identify the condition of corn plants.
Downloads
References
[2] pertanian, “budidaya jagung.†[online]. Available: https://pertanian.ngawikab.go.id/2022/08/08/budidaya-jagung/
[3] m. A. Suparlan, nurali, edi wati, “pengendalian terpadu hama utama tanaman jagung (zea mays, l) di lahan kering.†[online]. Available: http://cybex.pertanian.go.id/mobile/artikel/100282/pengendalian-terpadu-hama-utama-tanaman-jagung-zea-mays-l-di-lahan-kering/
[4] tajuddin bantacut, muammar tawaruddin akbar, and yasser redin firdaus, “pengembangan jagung untuk ketahanan pangan, industri dan ekonomi,†2015.
[5] koesrini, “teknologi budidaya jagung di lahan rawa.†2016. [online]. Available: http://balittra.litbang.pertanian.go.id/index.php?option=com_content&view=article&id=1823&itemid=10
[6] f. Afandi, “penyakit jagung dan cara mengatasinya.†[online]. Available: http://cybex.pertanian.go.id/mobile/artikel/74692/penyakit-jagung-dan-cara-mengatasinya/
[7] k. Pertanian, “analisis kinerja perdagangan jagung,†pusat data dan sistem informasi pertanian sekretariat jenderal kementerian pertanian 2021, pp. 5–24, 2021.
[8] p. Semitera, “abstrak seminar nasional teknologi terapan (semitera) 2021,†seminar teknologi terapan, 2021, [online]. Available: https://prosiding.polindra.ac.id/index.php/semitera/article/download/64/1
[9] k. Saputra s and m. I. Perangin-angin, “klasifikasi tanaman obat berdasarkan ekstraksi fitur morfologi daun menggunakan jaringan syaraf tiruan,†jurnal informatika, vol. 5, no. 2, pp. 169–174, 2018, doi: 10.31311/ji.v5i2.3770.
[10] d. Iswantoro and d. Handayani un, “klasifikasi penyakit tanaman jagung menggunakan metode convolutional neural network (cnn),†jurnal ilmiah universitas batanghari jambi, vol. 22, no. 2, p. 900, 2022, doi: 10.33087/jiubj.v22i2.2065.
[11] m. Sibiya and m. Sumbwanyambe, “automatic fuzzy logic-based maize common rust disease severity predictions with thresholding and deep learning,†pathogens, vol. 10, no. 2, pp. 1–17, 2021, doi: 10.3390/pathogens10020131.
[12] a. K. S. & s. C. M. Kshyanaprava panda panigrahi, himansu das, “maize leaf disease detection and classification using machine learning algorithms,†progress in computing, analytics and networking, vol. Volume 111, 2020, [online]. Available: https://link.springer.com/chapter/10.1007/978-981-15-2414-1_66
[13] i. Pratama putra and d. Alamsyah, “klasifikasi penyakit daun jagung menggunakan metode convolutional neural network,†jurnal algoritme, vol. 2, no. 2, pp. 102–112, 2022, [online]. Available: https://www.kaggle.com/qramkrishna/corn-leaf-infection-dataset
[14] q. N. Azizah, “klasifikasi penyakit daun jagung menggunakan metode convolutional neural network alexnet,†sudo jurnal teknik informatika, vol. 2, no. 1, pp. 28–33, feb. 2023, doi: 10.56211/sudo.v2i1.227.
[15] a. Neardiaty, “klasifikasi hama dan penyakit tanaman jagung menggunakan metode fuzzy random forest berdasarkan resampling repeated k-fold cross validation,†2022, [online]. Available: https://repository.unsri.ac.id/76903/
[16] ainani shabrina febrianti, tri arief sardjono, and atar fuady babgei, “klasifikasi tumor otak pada citra magnetic resonance image dengan menggunakan metode support vector machine,†jurnal teknik its, 2020.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Helna Wardhana, I Made Yadi Dharma, Khairan Marzuki, Ibjan Syarif Hidayatullah, Implementation of Neural Machine Translation in Translating from Indonesian to Sasak Language , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Arief Hermawan, Adityo Permana Wibowo, Akmal Setiawan Wijaya, The Improvement of Artificial Neural Network Accuracy Using Principle Component Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Edi Ismanto, Januar Al Amien, Vitriani Vitriani, A Comparison of Enhanced Ensemble Learning Techniques for Internet of Things Network Attack Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Ahmad Zein Al Wafi, Febry Putra Rochim, Veda Bezaleel, Investigating Liver Disease Machine Learning Prediction Performancethrough Various Feature Selection Methods , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Bobby Poerwanto, Fajriani Fajriani, Resilient Backpropagation Neural Network on Prediction of Poverty Levels in South Sulawesi , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Christofer Satria, Peter Wijaya Sugijanto, Anthony Anggrawan, I Nyoman Yoga Sumadewa, Aprilia Dwi Dayani, Rini Anggriani, Multi-Algorithm Approach to Enhancing Social Assistance Efficiency Through Accurate Poverty Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Danang Wahyu Utomo, Christy Atika Sari, Folasade Olubusola Isinkaye, Quality Improvement for Invisible Watermarking using Singular Value Decomposition and Discrete Cosine Transform , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Abd Mizwar A Rahim, Andi Sunyoto, Muhammad Rudyanto Arief, Stroke Prediction Using Machine Learning Method with Extreme Gradient Boosting Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Jelita Asian, Dimas Erlangga, Media Ayu, Data Exfiltration Anomaly Detection on Enterprise Networks using Deep Packet Inspection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Wikky Fawwaz Al Maki, Amien Jafar Makrufi, Support vector machine with a firefly optimization algorithm for classification of apple fruit disease , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
You may also start an advanced similarity search for this article.