Penerapan Teorema Bayes untuk Mendiagnosa Penyakit Telinga Hidung Tenggorokan (THT)
DOI:
https://doi.org/10.30812/matrik.v18i2.398Keywords:
Ear, Nose and Throat disease, Bayes theorem, expert systems, computational timeAbstract
Ear, Nose and Throat Disease (ENT) is a common disease that is often considered a harmless disease by people, so they assume there is no need to see a doctor. But in fact, ENT disease can also provide serious disorders if not treated early and right, so the expert system of ENT is needed for early detection before the patient decided to see a doctor or not. Based on these problems, this study proposed the application of the Bayes theorem for early detection of ENT disease. The types of diseases used in this study were six types and had 22 symptoms. User inputs the symptoms of a disease, then the system will provide a diagnosis. This diagnosis can be used as an initial reference for sufferers and can be used as a reference for young doctors who are taking medical education with an ENT specialist. In this initial research, testing was carried out to calculate the computational time needed by the system to diagnose ENT disease. Based on this research, we found that the average computing time needed by the system to diagnose is 00:09:54 or Nine minutes, fifty-four seconds.
Downloads
References
[2] N. K. Pebriyanti and A. W. Andika, “Sistem Pakar Penentuan Tanaman Obat pada Penyakit THT berbasis Web,†SINTECH (Science Inf. Technol. J., vol. 1, no. 1, pp. 34–40, 2018
[3] Y. R. Nasution and Khairuna, “Sistem pakar deteksi awal penyakit tuberkulosis dengan metode bayes,†Klorofil, vol. 1, no. 1, pp. 17–23, 2017
[4] R. Ramadhan, “Pemodelan Sistem Pakar Diagnosa Penyakit Tanaman Cabai Merah Dengan Metode Fuzzy-Ahp.,†Repos. J. Mhs. PTIIK UB., vol. 6, no. 7, 2015
[5] Hamdani, “Sistem Pakar Untuk Diagnosa Penyakit Pada Manusia,†J. Inform. Mulawarman, vol. 5, no. 2, pp. 13-21., 2010
[6] M. A. Fahmy, I. P. Ningrum, and J. Y. Sari, “Sistem pakar diagnosis penyakit hewan sapi dengan metode forward chaining,†no. December, 2018
[7] Y. Hendriana, “PROGRAM BANTU IDENTIFIKASI PENYAKIT THT,†in Simposium Nasional Teknologi Terapan (SNTT), 2013, pp. 58–63
[8] S. Wahyu, P., Muhammad A.W. dan Bagus, “Sistem pakar berbasis web untuk diagnosa awal penyakit THT,†in Prosiding SNATI Yogyakarta, 2008
[9] H. T. Sihotang, E. Panggabean, and H. Zebua, “Sistem Pakar Mendiagnosa Penyakit Herpes Zoster Dengan Menggunakan Metode Teorema Bayes,†J. Inform. Pelita Nusant., vol. 3, no. 1, pp. 33–40, 2018
[10] C. Vikasari., “Modernisasi Teknologi Realtime pada Pelelangan Ikan dalam Menumbuhkan Perekonomian Berbasis Kemaritiman,†JUITA J. Inform., 2018.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Vivin Nur Aziza, Utami Dyah Syafitri, Anwar Fitrianto, Optimizing Currency Circulation Forecasts in Indonesia: A Hybrid Prophet- Long Short Term Memory Model with Hyperparameter Tuning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Ni Putu Widiani, Ni Made Estiyanti, I Putu Satwika, Rancang Bangun Sistem Informasi Persediaan dan Permintaan Barang Proyek Kelistrikan Berbasis Web (Studi Kasus pada PT. Tea Kirana) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
- Tarwoto Tarwoto, Adam Prayogo Kuncoro, Evaluasi Penerapan Sistem Informasi Smart Prodi dengan Pendekatan Delone Mclean dan Framework Cobit 5 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Danang Wahyu Utomo, Christy Atika Sari, Folasade Olubusola Isinkaye, Quality Improvement for Invisible Watermarking using Singular Value Decomposition and Discrete Cosine Transform , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Putri Jafar, Dolly Indra, Fitriyani Umar, Color Feature Extraction for Grape Variety Identification: Naïve Bayes Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Purnawarman Musa, Eri Prasetyo Wibowo, Saiful Bahri Musa, Iqbal Baihaqi, Pelican Crossing System for Control a Green Man Light with Predicted Age , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Putu Tisna Putra, Anthony Anggrawan, Hairani Hairani, Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Firda Yunita Sari, Maharani sukma Kuntari, Hani Khaulasari, Winda Ari Yati, Comparison of Support Vector Machine Performance with Oversampling and Outlier Handling in Diabetic Disease Detection Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Wire Bagye, Maulana Ashari, Mohammad Taufan Asri Zaen, Prototipe Alat Kirim Pesan Singkat Tindak Kejahatan sebagai Solusi Peningkatan Keamanan Berbasis Lokasi , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Alya Masitha, Muhammad Kunta Biddinika, Herman Herman, K Value Effect on Accuracy Using the K-NN for Heart Failure Dataset , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
You may also start an advanced similarity search for this article.
.png)











