Penerapan Teorema Bayes untuk Mendiagnosa Penyakit Telinga Hidung Tenggorokan (THT)
DOI:
https://doi.org/10.30812/matrik.v18i2.398Keywords:
Ear, Nose and Throat disease, Bayes theorem, expert systems, computational timeAbstract
Ear, Nose and Throat Disease (ENT) is a common disease that is often considered a harmless disease by people, so they assume there is no need to see a doctor. But in fact, ENT disease can also provide serious disorders if not treated early and right, so the expert system of ENT is needed for early detection before the patient decided to see a doctor or not. Based on these problems, this study proposed the application of the Bayes theorem for early detection of ENT disease. The types of diseases used in this study were six types and had 22 symptoms. User inputs the symptoms of a disease, then the system will provide a diagnosis. This diagnosis can be used as an initial reference for sufferers and can be used as a reference for young doctors who are taking medical education with an ENT specialist. In this initial research, testing was carried out to calculate the computational time needed by the system to diagnose ENT disease. Based on this research, we found that the average computing time needed by the system to diagnose is 00:09:54 or Nine minutes, fifty-four seconds.
Downloads
References
[2] N. K. Pebriyanti and A. W. Andika, “Sistem Pakar Penentuan Tanaman Obat pada Penyakit THT berbasis Web,†SINTECH (Science Inf. Technol. J., vol. 1, no. 1, pp. 34–40, 2018
[3] Y. R. Nasution and Khairuna, “Sistem pakar deteksi awal penyakit tuberkulosis dengan metode bayes,†Klorofil, vol. 1, no. 1, pp. 17–23, 2017
[4] R. Ramadhan, “Pemodelan Sistem Pakar Diagnosa Penyakit Tanaman Cabai Merah Dengan Metode Fuzzy-Ahp.,†Repos. J. Mhs. PTIIK UB., vol. 6, no. 7, 2015
[5] Hamdani, “Sistem Pakar Untuk Diagnosa Penyakit Pada Manusia,†J. Inform. Mulawarman, vol. 5, no. 2, pp. 13-21., 2010
[6] M. A. Fahmy, I. P. Ningrum, and J. Y. Sari, “Sistem pakar diagnosis penyakit hewan sapi dengan metode forward chaining,†no. December, 2018
[7] Y. Hendriana, “PROGRAM BANTU IDENTIFIKASI PENYAKIT THT,†in Simposium Nasional Teknologi Terapan (SNTT), 2013, pp. 58–63
[8] S. Wahyu, P., Muhammad A.W. dan Bagus, “Sistem pakar berbasis web untuk diagnosa awal penyakit THT,†in Prosiding SNATI Yogyakarta, 2008
[9] H. T. Sihotang, E. Panggabean, and H. Zebua, “Sistem Pakar Mendiagnosa Penyakit Herpes Zoster Dengan Menggunakan Metode Teorema Bayes,†J. Inform. Pelita Nusant., vol. 3, no. 1, pp. 33–40, 2018
[10] C. Vikasari., “Modernisasi Teknologi Realtime pada Pelelangan Ikan dalam Menumbuhkan Perekonomian Berbasis Kemaritiman,†JUITA J. Inform., 2018.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Bambang Suprihatin, Yuli Andriani, Fauziah Nuraini Kurdi, Anita Desiani, Ibra Giovani Dwi Putra, Muhammad Akmal Shidqi, Lungs X-Ray Image Segmentation and Classification of Lung Disease using Convolutional Neural Network Architectures , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Budi Sumanto, Salima Nurrahma, Comparison of Random Forest Support Vector Machine and Passive Aggressive Models on E-nose-Based Aromatic Rice Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Mohammad Diqi, Ema Utami, Kusrini Kusrini, Ferry Wahyu Wibowo, Leveraging Vector Quantized Variational Autoencoder for Accurate Synthetic Data Generation in Multivariate Time Series , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Ahmad Zein Al Wafi, Febry Putra Rochim, Veda Bezaleel, Investigating Liver Disease Machine Learning Prediction Performancethrough Various Feature Selection Methods , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Fiby Nur Afiana, Pungkas Subarkah, A. Kholil Hidayat, Analisis Perbandingan Metode TAM dan Metode UTAUT 2 dalam Mengukur Kesuksesan Penerapan SIMRS pada Rumah Sakit Wijaya Kusuma DKT Purwokerto , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Sela Octaviani, Evi Triandini, Dandy Pramana Hostiadi, Evaluating Lecturer Satisfaction on Academic Information System Using Usability and EUCS at Bandung University of Technology , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Soleh Ardiansyah, Adani Setiorini, Lovinta Happy Atrinawati, Tegar Palyus Fiqar, Perancangan Arsitektur Sistem dan Teknologi Informasi Menggunakan Togaf ADM (Studi Kasus Dinas Perhubungan Kota Balikpapan) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Denny Indrajaya, Adi Setiawan, Bambang Susanto, Comparison of k-Nearest Neighbor and Naive Bayes Methods for SNP Data Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Achmad Afif Irwansyah, Aripriharta Aripriharta, Didik Dwi Prasetya, Stochastic Optimization for Hostage Rescue Using Internet of Things and Queen Honey Bee Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Roudlotul Jannah Alfirdausy, Nurissaidah Ulinnuha, Wika Dianita Utami, Implementation of The Extreme Gradient Boosting Algorithm with Hyperparameter Tuning in Celiac Disease Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
You may also start an advanced similarity search for this article.
.png)











