Accuracy of K-Nearest Neighbors Algorithm Classification For Archiving Research Publications
DOI:
https://doi.org/10.30812/matrik.v23i3.3915Keywords:
Accuracy, Algorithm Classification, K-Nearest NeighborsAbstract
The Archives and Research Publication Information System plays an important role in managing academic research and scientific publications efficiently. With the increasing volume of research and publications carried out each year by university researchers, the Research Archives and Publications Information System is essential for organizing and processing these materials. However, managing large amounts of data poses challenges, including the need to accurately classify a researcher's field of study. To overcome these challenges, this research focuses on implementing the K-Nearest Neighbors classification algorithm in the Archives and Research Publications Information System application. This research aims to improve the accuracy of classification systems and facilitate better decision-making in the management of academic research. This research method is systematic involving data acquisition, pre-processing, algorithm implementation, and evaluation. The results of this research show that integrating Chi-Square feature selection significantly improves K-Nearest Neighbors performance, achieving 86% precision, 84.3% recall, 89.2% F1 Score, and 93.3% accuracy. This research contributes to increasing the efficiency of the Archives and Research Publication Information System in managing research and academic publications.
Downloads
References
MobileNet v2 model,†International Journal of Advances in Intelligent Informatics, vol. 6, no. 2, pp. 135–148, Jul. 2020,
https://doi.org/10.26555/ijain.v6i2.492.
[2] J. Setiabudi, I. G. A. A. E. Indira, and N. M. D. Puspawati, “Profil Pra Kanker dan Kanker Kulit di RSUP Sanglah Periode
2015-2018,†E-Jurnal Medika Udayana, vol. 10, no. 3, pp. 83–88, Mar. 2021, https://doi.org/10.24843/MU.2021.V10.i3.P13.
[3] M. Miftahurrohmah, S. Fatimah, and I. Subarkah, “Metode Al-Miftah Lil ’Ulum sebagai Upaya Meningkatkan Motivasi
dan Kemampuan Siswa dalam Membaca Kitab Kuning di SMP Ar-Raudhah,†Social, Humanities, and Educational Studies
(SHES): Conference Series, vol. 6, no. 1, pp. 169–176, Feb. 2023, https://doi.org/10.20961/shes.v6i1.71074.
[4] A. Hayati, “The Use of Digital Guessing Game to Improve Students Speaking Ability,†Journal of English Education and
Teaching, vol. 4, no. 1, pp. 115–126, Mar. 2020, https://doi.org/10.33369/jeet.4.1.115-126.
[5] M. Z. Katili, L. N. Amali, and M. S. Tuloli, “Implementasi Metode AHP-TOPSIS dalam Sistem Pendukung
Rekomendasi Mahasiswa Berprestasi,†Jambura Journal of Informatics, vol. 3, no. 1, pp. 1–10, Apr. 2021,
https://doi.org/10.37905/jji.v3i1.10246.
[6] W. Widyaningsih, I. I. Tritoasmoro, and N. C. Kumalasari, “Perbandingan Klasifikasi Kematangan Buah Kopi Menggunakan
Metode Fuzzy Logic Dan K-Nearest Neighbor Dengan Ekstraksi Ciri Gray Level Co-Occurrrence Matrix,†eProceedings of
Engineering, vol. 7, no. 2, pp. 40–60, Aug. 2020.
[7] P. A. Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network
(CNN) pada Ekspresi Manusia,†ALGOR, vol. 2, no. 1, pp. 12–20, Nov. 2020.
[8] E. Goodarzi, M. Sohrabivafa, H. A. Adineh, L. Moayed, and Z. Khazaei, “Geographical distribution global incidence and
mortality of lung cancer and its relationship with the Human Development Index (HDI); an ecology study in 2018,†World
Cancer Research Journal, vol. 6, no. 1, pp. 1–11, Jul. 2020, https://doi.org/10.32113/wcrj 20197 1354.
[9] Y. Jusman, M. K. Anam, S. Puspita, E. Saleh, S. N. A. M. Kanafiah, and R. I. Tamarena, “Comparison of Dental
Caries Level Images Classification Performance using KNN and SVM Methods,†in 2021 IEEE International Conference
on Signal and Image Processing Applications (ICSIPA). Kuala Terengganu, Malaysia: IEEE, Sep. 2021, pp. 167–172,
https://doi.org/10.1109/ICSIPA52582.2021.9576774.
[10] N. Alyyu, Y. N. Fuadah, and N. K. C. Pratiwi, “Klasifikasi Kanker Kulit Ganas Dan Jinak Menggunakan Metode Convolutional
Neural Network,†eProceedings of Engineering, vol. 9, no. 6, pp. 3200–3206, 2022.
[11] S. Ulya, M. A. Soeleman, and F. Budiman, “Optimasi Parameter K Pada Algoritma K-NN Untuk Klasifikasi Prioritas Bantuan
Pembangunan Desa,†Techno.Com, vol. 20, no. 1, pp. 83–96, Feb. 2021, https://doi.org/10.33633/tc.v20i1.4215.
[12] R. Agustina, R. Magdalena, and N. K. C. Pratiwi, “Klasifikasi Kanker Kulit menggunakan Metode Convolutional Neural
Network dengan Arsitektur VGG-16,†ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik
Elektronika, vol. 10, no. 2, pp. 446–457, Apr. 2022, https://doi.org/10.26760/elkomika.v10i2.446.
[13] V. Radhika and B. S. Chandana, “Skin Melanoma Classification from Dermoscopy Images using ANU-Net Technique,â€
International Journal of Advanced Computer Science and Applications, vol. 13, no. 10, pp. 928–938, 2022,
https://doi.org/10.14569/IJACSA.2022.01310109.
[14] D. Valero-Carreras, J. Alcaraz, and M. Landete, “Comparing two SVM models through different metrics based on the confusion
matrix,†Computers & Operations Research, vol. 152, no. 1, pp. 1–12, Apr. 2023, https://doi.org/10.1016/j.cor.2022.106131.
[15] D. Boi, B. Runje, D. Lisjak, and D. Kolar, “Metrics Related to Confusion Matrix as Tools for Conformity Assessment
Decisions,†Applied Sciences, vol. 13, no. 14, pp. 8187–8197, Jul. 2023, https://doi.org/10.3390/app13148187.
[16] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and
Prospects,†IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 6999–7019, Dec. 2022,
https://doi.org/10.1109/TNNLS.2021.3084827.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Apriani Apriani, Sandi Justitia Putra, Ismarmiaty Ismarmiaty, Ni Gusti Ayu Dasriani, E-Alert Application in Facing Earthquake Disaster , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Fatur Rahman Harahap, Anggun Fitrian Isnawati, Khoirun Ni'amah, Variation of Distributed Power Control Algorithm in Co-Tier Femtocell Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Lilik Widyawati, Imam Riadi, Yudi Prayudi, Comparative Analysis of Image Steganography using SLT, DCT and SLT-DCT Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Joko Handoyo, Anton Yudhana, Sunardi Sunardi, Flood Vulnerability Mapping in Cepu Subdistrict Using MamdaniFuzzy Inference System for Disaster Risk Reduction , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Pungkas Subarkah, Enggar Pri Pambudi, Septi Oktaviani Nur Hidayah, Perbandingan Metode Klasifikasi Data Mining untuk Nasabah Bank Telemarketing , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Arfiani Nur Khusna, Krisvan Patra Delasano, Dimas Chaerul Ekty Saputra, Penerapan User-Based Collaborative Filtering Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Pardomuan Robinson Sihombing, Istiqomatul Fajriyah Yuliati, Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Khairunnisak Nur Isnaini, Didit Suhartono, Evaluation of Basic Principles of Information Security at University Using COBIT 5 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Sri Ayu Rosiva Srg, Muhammad Zarlis, Wanayumini Wanayumini, Klasifikasi Citra Daun dengan GLCM (Gray Level Co-Occurence) dan K-NN (K-Nearest Neighbor) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Ni Luh Putri Srinadi, I Nyoman Suraja Antarajaya, Luh Putu Wiwien Widhyastuti, Dandy Pramana Hostiadi, Erma Sulistyo Rini, Pharan Chawaphan, Analysis of Combination Machine Learning Classification with Feature Selection Technique for Lecturer Performance Analysis Model , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Viva Arifin, Velia Handayani, Luh Kesuma Wardhani, Hendra Bayu Suseno, Siti Ummi Masruroh, User Interface and Exprience Gamification-Based E-Learning with Design Science Research Methodology , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Siti Ummi Masruroh, Andrew Fiade, Muhammad Ikhsan Tanggok, Rizka Amalia Putri, Luigi Ajeng Pratiwi, Convolutional Neural Network for Colorization of Black and White Photos , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Siti Ummi Masruroh, Cong Dai Nguyen, Doni Febrianus, Comparative Analysis of TF-IDF and Modern Text Embedding for theClassification of Islamic Ideologies on Indonesian Twitter , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
.png)











