Flood Vulnerability Mapping in Cepu Subdistrict Using MamdaniFuzzy Inference System for Disaster Risk Reduction
DOI:
https://doi.org/10.30812/matrik.v25i1.5390Keywords:
Cepu Subdistrict, Fuzzy Inference System, Flood Vulnerability, MamdaniAbstract
Floods pose a persistent and serious threat to Cepu Subdistrict, frequently causing significant economic loss, resident displacement, and damage to critical infrastructure. In response to this issue, and aligned with the National Disaster Management Agency's (BNPB) efforts to enhance landscape monitoring, a comprehensive analytical study was conducted. The purpose of this research was to assess and map the flood vulnerability levels across 17 villages in Cepu Subdistrict, categorizing them to facilitate more effective disaster response planning and resource allocation. The research method uses the Mamdani Fuzzy Inference System, an advanced computational approach adept at handling the non-linear relationships between environmental variables. This system allowed for a detailed analysis of the complex interactions among key flood-influencing factors, including rainfall intensity, watershed area, elevation, slope, and population density. The results of the quantitative research obtained from 17 villages in the Cepu Subdistrict show that Ngelo Village has the highest score of 65.16, categorized as a "high" risk level. In contrast, most other villages, such as Ngroto, Karangboyo, and Cabean, fell into the "medium" risk category with varying scores between 55.0 and 63.93. The model's accuracy was validated by evaluation metrics, with a Mean Absolute Error (MAE) of 8.67 and a Root Mean Squared Error (RMSE) of 10.29, indicating satisfactory predictive performance. The conclusion of this study emphasizes the urgent need for comprehensive and adaptive mitigation strategies, including early warning systems and community preparedness programs, to protect Cepu Subdistrict from future flood threats.
Downloads
References
[1] F. I. W. Rohmat, Z. Sa’adi, I. Stamataki, A. A. Kuntoro, M. Farid, and R. Suwarman, “Flood modeling and
baseline study in urban and high population environment: A case study of Majalaya, Indonesia,” Urban Climate,
vol. 46, p. 101332, dec 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212095522002504https:
//linkinghub.elsevier.com/retrieve/pii/S2212095522002504
[2] S. Komsiyah, M. R. Ardyanti, and I. A. Iswanto, “Flood-Prone Susceptibility Analysis In Garut Using Fuzzy Inference System
Mamdani Method,” Procedia Computer Science, vol. 227, pp. 912–921, 2023. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1877050923017659https://linkinghub.elsevier.com/retrieve/pii/S1877050923017659
[3] G. Wee, L.-C. Chang, F.-J. Chang, and M. Z. Mat Amin, “A flood Impact-Based forecasting system by fuzzy inference
techniques,” Journal of Hydrology, vol. 625, p. 130117, oct 2023. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0022169423010594https://linkinghub.elsevier.com/retrieve/pii/S0022169423010594
[4] B. A. Kindhi, M. I. Triana, U. L. Yuhana, S. Damarnegara, F. Istiqomah, and M. H. Imaaduddiin, “Flood Identification
with Fuzzy Logic Based on Rainfall and Weather for Smart City Implementation,” in 2022 IEEE International
Conference on Communication, Networks and Satellite (COMNETSAT). IEEE, nov 2022, pp. 67–72. [Online]. Available:
https://ieeexplore.ieee.org/document/9994512/
[5] Y. S. Jaya, L. Pramudita, D. Syahfitri, S.Wahyuni, Y. Triandriana, and B. D. A. Prayanti, “Implementation of the fuzzy mamdani
method in analyzing the level of flood vulnerability in Pangkalpinang city,” IOP Conference Series: Earth and Environmental
Science, vol. 1419, no. 1, p. 012078, dec 2024. [Online]. Available: https://dx.doi.org/10.1088/1755-1315/1419/1/012078https:
//iopscience.iop.org/article/10.1088/1755-1315/1419/1/012078
[6] R. Tabbussum and A. Q. Dar, “Performance evaluation of artificial intelligence paradigms—artificial neural networks, fuzzy
logic, and adaptive neuro-fuzzy inference system for flood prediction,” Environmental Science and Pollution Research,
vol. 28, no. 20, pp. 25 265–25 282, may 2021. [Online]. Available: https://doi.org/10.1007/s11356-021-12410-1https:
//link.springer.com/10.1007/s11356-021-12410-1
[7] K. Seeboruth, L. Z. Wen, V. A. Hameed, T. Y. Ling, K. P. Rajadorai, and M. E. Rana, “Fuzzy Logic Approach to Predicting
Rainfall Patterns,” in 2023 IEEE 21st Student Conference on Research and Development (SCOReD). IEEE, dec 2023, pp.
432–436. [Online]. Available: https://ieeexplore.ieee.org/document/10563899/
[8] I. K. Dulaimi, “Integrating Fuzzy Decision-Making and Artificial Intelligence in Crisis and
Disaster Management,” Scientific Research Journal of Engineering and Computer Sciences,
vol. 4, no. 2, pp. 1–10, 2024. [Online]. Available: https://www.iarconsortium.org/srjecs/53/2831/
-integrating-fuzzy-decision-making-and-artificial-intelligence-in-crisis-and-disaster-management--4648/
[9] Y. Wang, P. Zhang, Y. Xie, L. Chen, and Y. Li, “Toward explainable flood risk prediction: Integrating a novel hybrid machine
learning model,” Sustainable Cities and Society, vol. 120, p. 106140, feb 2025. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2210670725000186https://linkinghub.elsevier.com/retrieve/pii/S2210670725000186
[10] S. Kambalimath and P. C. Deka, “A basic review of fuzzy logic applications in hydrology and water resources,” Applied
Water Science, vol. 10, no. 8, p. 191, aug 2020. [Online]. Available: https://doi.org/10.1007/s13201-020-01276-2https:
//link.springer.com/10.1007/s13201-020-01276-2
[11] A. Zalnezhad, A. Rahman, N. Nasiri, K. Haddad, M. M. Rahman, M. Vafakhah, B. Samali, and F. Ahamed, “Artificial
Intelligence-Based Regional Flood Frequency Analysis Methods: A Scoping Review,” Water, vol. 14, no. 17, p. 2677, aug
2022. [Online]. Available: https://dx.doi.org/10.1088/1755-1315/1419/1/012078https://www.mdpi.com/2073-4441/14/17/2677
[12] A. P. Sadanna, D. L. Setyowati, and E. Suharini, “Community vulnerability and resilience to flood disaster in Losari District,
Brebes Regency,” IOP Conference Series: Earth and Environmental Science, vol. 1314, no. 1, p. 012125, mar 2024. [Online].
012125
[13] J. George and E. Al., “Software Engineering: A Practitioner’s Approach,” in Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 2024, pp. 1–900.
[14] S. Ghosh and D. Chakraborty, “Fuzzy-based flood risk modeling using decision flowcharts,” Environmental Modelling & Software,
vol. 165, p. 104712, 2023.
[15] V. Hadipour, F. Vafaie, and K. Deilami, “Coastal Flooding Risk Assessment Using a GIS-Based Spatial Multi-Criteria Decision
Analysis Approach,” Water, vol. 12, no. 9, p. 2379, aug 2020. [Online]. Available: https://www.mdpi.com/2073-4441/12/9/2379
[16] G. A. Rahardi, W. Muldayani, M. D. A. Wijaya, D. Setiabudi, and H. M. Firdausi, “Early Warning System Design
for Flood Disasters Using the IoT-Based Fuzzy Logic Control Method,” in 2022 International Conference on Electrical
Engineering, Computer and Information Technology (ICEECIT). IEEE, nov 2022, pp. 131–135. [Online]. Available:
https://ieeexplore.ieee.org/document/10030237/
[17] S. Tomasiello,W. Pedrycz, and V. Loia, “Contemporary Fuzzy Logic,” in Big and Integrated Artificial Intelligence, ser. Big and
Integrated Artificial Intelligence. Cham: Springer International Publishing, 2022, vol. 1, pp. 101 –140. [Online]. Available:
https://link.springer.com/10.1007/978-3-030-98974-3
[18] B. A. Beker and M. L. Kansal, “Fuzzy logic-based integrated performance evaluation of a water distribution network,”
Journal of Water Supply: Research and Technology-Aqua, vol. 71, no. 3, pp. 490–506, mar 2022. [Online]. Available:
https://iwaponline.com/aqua/article/71/3/490/87283/Fuzzy-logic-based-integrated-performance
[19] H. Chen, Z. Xu, Y. Liu, Y. Huang, and F. Yang, “Urban Flood Risk Assessment Based on Dynamic Population Distribution and
Fuzzy Comprehensive Evaluation,” International Journal of Environmental Research and Public Health, vol. 19, no. 24, p.
16406, dec 2022. [Online]. Available: https://www.mdpi.com/1660-4601/19/24/16406
[20] K. Lira, M. v. Z. de Jong, M. King, and I. Cowx, “A watershed fragility index for assessing the vulnerability of river
ecosystems,” Ecological Indicators, vol. 178, p. 113908, sep 2025. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1470160X25008386https://linkinghub.elsevier.com/retrieve/pii/S1470160X25008386
[21] H. Akay, “Flood Susceptibility Mapping Using Information Fusion Paradigm Integrated with Decision Trees,” Water
Resources Management, vol. 38, no. 13, pp. 5365–5383, oct 2024. [Online]. Available: https://link.springer.com/10.1007/
s11269-024-03918-5
[22] M. Yılmaz and K. D. Alemdar, “Mapping and assessment of flood risk based on vulnerability and hazard
factors in urban areas through the integration of multi-criteria techniques and GIS: A case study in Yakutiye,
Erzurum, T¨urkiye,” Environmental Earth Sciences, vol. 84, no. 15, p. 435, jul 2025. [Online]. Available:
https://doi.org/10.1007/s12665-025-12393-zhttps://link.springer.com/10.1007/s12665-025-12393-z
[23] X. Ma, Y. Wang, Z. Tang, and S. Li, “Urban Flood Risk Assessment Based on DEMATEL-ANP Hybrid
Fuzzy Evaluation and Hydrodynamic Model,” Water, vol. 17, no. 10, p. 1494, may 2025. [Online]. Available:
https://www.mdpi.com/2073-4441/17/10/1494
[24] M. G. Voskoglou, “Fuzzy Sets, Fuzzy Logic and Their Applications 2020,” in Fuzzy Sets, Fuzzy Logic and Their Applications
2020, M. G. Voskoglou, Ed. MDPI, sep 2021, pp. 1–250. [Online]. Available: http://www.mdpi.com/books/pdfview/book/4344
[25] J. M. Mendel, “Explainable Uncertain Rule-Based Fuzzy Systems,” in Explainable Uncertain Rule-Based Fuzzy
Systems, 3rd, Ed. Cham: Springer International Publishing, 2024, pp. 1–450. [Online]. Available: https:
//doi.org/10.1007/978-3-031-35378-9https://link.springer.com/10.1007/978-3-031-35378-9
[26] Y. Liu, Q. Zhao, C. Hu, and N. Luo, “Prediction of Storm Surge Water Level Based on Machine Learning Methods,”
Atmosphere, vol. 14, no. 10, p. 1568, oct 2023. [Online]. Available: https://www.mdpi.com/2073-4433/14/10/1568
[27] C. Ni, P. S. Fam, and M. F. Marsani, “A Data-Driven Method and Hybrid Deep Learning Model for Flood Risk
Prediction,” International Journal of Intelligent Systems, vol. 2024, no. 1, pp. 1–20, feb 2024. [Online]. Available:
https://doi.org/10.1155/2024/3562709https://www.hindawi.com/journals/ijis/2024/3562709/
[28] S. C. Roy, S. Banik, and M. Pramanik, “Performance comparison of machine learning models for monthly water level forecasting:
A case study in Indian River Basins,” Environmental Advances, vol. 13, p. 100157, 2025.
[29] Z. Zhou, Q. Liu, and J. He, “Evaluating flood forecasting performance using RMSE, MAE, and NSE: A case from the Yangtze
River,” Natural Hazards, vol. 113, no. 2, pp. 1213–1232, 2022.
[30] M. Kaur, P. D. Kaur, and S. K. Sood, “ANFIS-based flood detection and vulnerability assessment framework,” Hydrological
Sciences Journal, vol. 67, no. 15, pp. 2310–2326, nov 2022. [Online]. Available: https://doi.org/10.1080/02626667.2022.
2138759https://www.tandfonline.com/doi/full/10.1080/02626667.2022.2138759
[31] L. Khaldi, A. El Bilali, A. El Abed, N. Krakauer, and A. El Khanchoufi, “Developing an explainable
and interpretable machine learning model for flood susceptibility mapping,” Ecological Engineering & Environmental
Technology, vol. 26, no. 1, pp. 201–215, jan 2025. [Online]. Available: http://www.ecoeet.com/
Developing-an-explainable-and-interpretable-machine-learning-model-for-flood-susceptibility,195845,0,2.html
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Joko Handoyo, Anton Yudhana, Sunardi Sunardi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
Similar Articles
- Muhammad Yunus, PENERAPAN FUZZY EXPERT SYSTEM UNTUK DIAGNOSA PENYAKIT TELINGA, HIDUNG DAN TENGGOROKAN (THT) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 1 (2015)
- Muhammad Yunus, Optimasi Penentuan Nilai Parameter Himpunan Fuzzy dengan Teknik Tuning System , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
- Anthony Anggrawan, Mayadi Mayadi, Application of KNN Machine Learning and Fuzzy C-Means to Diagnose Diabetes , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Muhammad Yusuf, Arizal Arizal, Ira Rosianal Hikmah, Implementation Cryptography and Access Control on IoT-Based Warehouse Inventory Management System , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Achmad Lukman, Wahju Tjahjo Saputro, Erni Seniwati, Improving Performance Convolutional Neural Networks Using Modified Pooling Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Muhammad Yunus, Suriyati Suriyati, ANALISA DAN PERANCANGAN SISTEM FUZZY UNTUK PENENTUAN BEASISWA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 1 (2016)
- Husain Husain, I Putu Hariyadi, Kurniadin Abd Latif, Galih Tri Aditya, Implementation of Port Knocking with Telegram Notifications to Protect Against Scanner Vulnerabilities , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Halim Budi Santoso, Darma Cahyadi, Erick Kurniawan, PROGAM BANTU PEMESANAN JASA PERBAIKAN AC STUDI KASUS: CV. KURNIATAMA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 2 (2017)
- Jusmita Weriza, Ismail Husein, Noranizamardia Noranizamardia, M Fakhariza, Khairan Marzuki, Development of OnlineWeb-Based New Student Graduation Application in Junior High School , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Erna Daniati, Sucipto Sucipto, Anita Sari Wardani, Akmal Hisyam Pradhana, Usability Test on the System Determination Decision Support ReleaseProduct Towards Contribution Level Decision Maker , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Tugiman Tugiman, Herman Herman, Anton Yudhana, The UTAUT Model for Measuring Acceptance of the Application of the Patient Registration System , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- sri suharti, Anton Yudhana, Imam Riadi, Forensik Jaringan DDoS menggunakan Metode ADDIE dan HIDS pada Sistem Operasi Proprietary , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Miftahuddin Fahmi, Anton Yudhana, Sunardi Sunardi, Image Processing Using Morphology on Support Vector Machine Classification Model for Waste Image , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Joko Supriyanto, Abdul Fadlil, Sunardi Sunardi, Pengujian Kualitatif Aplikasi Informasi Gempa Bumi dalam Bentuk Suara untuk Tunanetra , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Yana Safitri, Imam Riadi, Sunardi Sunardi, Mobile Forensic for Body Shaming Investigation Using Association of Chief Police Officers Framework , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
.png)











