SEGMENTASI CITRA MRI MENGGUNAKAN DETEKSI TEPI UNTUK IDENTIFIKASI KANKER PAYUDARA
DOI:
https://doi.org/10.30812/matrik.v15i2.38Keywords:
segmentation, MRI, edge detection, breast cancerAbstract
One type of cancer that is capable identifed using MRI technology is breast cancer. Breast cancer is still the leading cause of death world. therefore early detection of this disease is needed. In identifying breast cancer, a doctor or radiologist analyzing the results of magnetic resonance image that is stored in the format of the Digital Imaging Communication In Medicine (DICOM). It takes skill and experience suffcient for diagnosis is appropriate, and accurate, so it is necessary to create a digital image processing applications by utilizing the process of object segmentation and edge detection to assist the physician or radiologist in identifying breast cancer. MRI image segmentation using edge detection to identifcation of breast cancer using a method stages gryascale change the image format, then the binary image thresholding and edge detection process using the latest Robert operator. Of the 20 tested the input image to produce images with the appearance of the boundary line of each region or object that is visible and there are no edges are cut off, with the average computation time less than one minute.
Downloads
References
[2]. Kadir, Abdul [2013], Dasar Pengolahan Citra dengan DELPHI, 1st.edition, CV.ANDI OFFSET., Yogyakarta.
[3]. Nurhasanah and Ihwan, Andi [2013]. Deteksi Tepi Citra Kanker Payudara dengan Menggunakan Laplacian of Gaussian (LOG). Procedings Semirata FMIPA Universitas Lampung.
[4]. Nurhasanah [2011]. Segmentasi Jaringan Ota Putih, Jaringan Otak Abu-Abu dan cairan Otak dari Citra MRI Menggunakan Teknik K-Means Clustering. Jurnal Aplikasi Fisika Vol.7, No.2. FMIPA Universsitas Tanjungpura.
[5]. Gonzalez, Rafael, Woods, Richard E [2007]. Digilat Image Processing, Third Edition. Pearson
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Imamah Imamah, Akhmad Siddiqi, Penerapan Teorema Bayes untuk Mendiagnosa Penyakit Telinga Hidung Tenggorokan (THT) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- I Gusti Ayu Agung Diatri Indradewi, Ni Wayan Sumartini Saraswati, Ni Wayan Wardani, COVID-19 Chest X-Ray Detection Performance Through Variations of Wavelets Basis Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Anita Desiani, Irmeilyana Irmeilyana, Endro Setyo Cahyono, Des Alwine Zayanti, Sugandi Yahdin, Muhammad Arhami, Irvan Andrian, Combination Contrast Stretching and Adaptive Thresholding for Retinal Blood Vessel Image , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Zilvanhisna Emka Fitri, Lalitya Nindita Sahenda, Sulton Mubarok, Abdul Madjid, Arizal Mujibtamala Nanda Imron, Implementing K-Nearest Neighbor to Classify Wild Plant Leaf as a Medicinal Plants , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Anas Syaifudin, Purwanto Purwanto, Heribertus Himawan, M. Arief Soeleman, Customer Segmentation with RFM Model using Fuzzy C-Means and Genetic Programming , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Dela Ananda Setyarini, Agnes Ayu Maharani Dyah Gayatri, Christian Sri Kusuma Aditya, Didih Rizki Chandranegara, Stroke Prediction with Enhanced Gradient Boosting Classifier and Strategic Hyperparameter , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Jian Budiarto, Jihadil Qudsi, Deteksi Citra Kendaraan Berbasis Web Menggunakan Javascript Framework Library , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
- Putri Jafar, Dolly Indra, Fitriyani Umar, Color Feature Extraction for Grape Variety Identification: Naïve Bayes Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Muhammad Amirul Mukminin, Tio Dharmawan, Muhamad Arief Hidayat, Gender Classification Using Viola Jones, Orthogonal Difference Local Binary Pattern and Principal Component Analysis , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Edi Ismanto, Januar Al Amien, Vitriani Vitriani, A Comparison of Enhanced Ensemble Learning Techniques for Internet of Things Network Attack Detection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ahmat Adil, Bambang Krismono Triwijoyo, Sistem Informasi Geografis Pemetaan Jaringan Irigasi dan Embung di Lombok Tengah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Bambang Krismono Triwijoyo, Ahmat Adil, Anthony Anggrawan, Convolutional Neural Network With Batch Normalization for Classification of Emotional Expressions Based on Facial Images , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Dadang Priyanto, Bambang Krismono Triwijoyo, Deny Jollyta, Hairani Hairani, Ni Gusti Ayu Dasriani, Data Mining Earthquake Prediction with Multivariate Adaptive Regression Splines and Peak Ground Acceleration , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Anthony Anggrawan, Raisul Azhar, Bambang Krismono Triwijoyo, Mayadi Mayadi, Developing Application in Anticipating DDoS Attacks on Server Computer Machines , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Bambang Krismono Triwijoyo, Model Fast Tansfer Learning pada Jaringan Syaraf Tiruan Konvolusional untuk Klasifikasi Gender Berdasarkan Citra Wajah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Bambang Krismono Triwijoyo, SEGMENTASI CITRA PEMBULUH DARAH RETINA MENGGUNAKAN METODE DETEKSI GARIS MULTI SKALA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 1 (2015)
.png)











