Perbandingan Metode Backpropagation dan Learning Vector Quantization (LVQ) Dalam Menggali Potensi Mahasiswa Baru di STMIK PalComTech
DOI:
https://doi.org/10.30812/matrik.v18i2.387Keywords:
Backpropagation, Artificial Neural Network, Learning Vector QuanitzationAbstract
The Research aimst to compare backpropagation and Learning Vector Quantization (LVQ) methods in exploring the potential of new students at STMIK PalComTech. Comparisons in this study involve four input variables used which consist of four basic subjects of informatics engineering and information systems (math, basic programming, computer networks and management bases) which then make informatics techniques and information systems as outputs, to get the accuracy level high in this study, the researchers used several variations of parameters which eventually produced the best accuracy of the two methods. From 120 data tested using variations in test data and training data which are then processed using variations in the learning rate parameters and epochs. From the test results obtained the level of accuracy of pattern recognition in the backpropagation method is 99.17% with a learning rate variation of 0.1 and epoch 100, the learning vector quantization method has an accuracy rate of 96.67% with a variation of learning rate 1 and epoch 20 From the results of the comparison the Backpropagation method is superior in terms of accuracy so that it becomes the right method to use in exploring the potential of new students at STMIK PalComTech.
Downloads
References
[2] a. Nurkhozin, M. I. Irawan, and I. Mukhlash, “Klasifikasi Penyakit Diabetes Mellitus Menggunakan Jaringan Syaraf Tiruan Backpropagation Dan Learning,†Pros. Semin. Nas. Penelitian, Pendidik. dan Penerapan MIPA, no. 7, pp. 1–8, 2011.
[3] M. F. Q. Azizi, “Perbandingan antara Metode Backpropagation dengan Metode Learning Vector Quantization (LVQ) pada Pengenalan Citra Barcode.†Universitas Negeri Semarang, 2013.
[4] A. Prabowo, E. A. Sarwoko, and D. E. Riyanto, “Learning Vector Quantization Pada Pengenalan Pola Tandatangan,†J. SAINS DAN Mat., vol. 14, no. 4, pp. 147–153, 2006.
[5] R. Meliawati, O. Soesanto, and D. Kartini, “Penerapan Metode Learning Vector Quantization (LVQ) Pada Prediksi Jurusan Di SMA PGRI 1 Banjarbaru,†KLIK-KUMPULAN J. ILMU Komput., vol. 3, no. 1, pp. 11–20, 2016.
[6] D. Kartini, R. A. Nugroho, and M. R. Faisal, “Klasifikasi Kelulusan Mahasiswa Menggunakan Algoritma Learning Vector Quantization,†POSITIF J. Sist. dan Teknol. Inf., vol. 3, no. 2, pp. 93–98, 2017.
[7] D. A. Nugraha and W. Retnowati, “Sistem Pendukung Keputusan Penjurusan di SMA Menggunakan Metode Neural Network Backpropagation (Studi Kasus SMA Islam Kepanjen Malang),†Bimasakti.
[8] A. Jumarwanto, R. Hartanto, and D. Prastiyanto, “Aplikasi jaringan saraf tiruan backpropagation untuk memprediksi penyakit THT di Rumah Sakit Mardi Rahayu Kudus,†J. Tek. Elektro, vol. 1, no. 1, p. 11, 2009.
[9] S. Kusumadewi, “Artificial intelligence (teknik dan aplikasinya),†Yogyakarta Graha Ilmu, vol. 5, 2003.
[10] J. J. Siang, “Jaringan syaraf tiruan dan pemrogramannya menggunakan Matlab,†Penerbit Andi, Yogyakarta, 2005. [11] D. Puspitaningrum, “Pengantar Jaringan Syaraf Tiruan,†2006.
[12] L. V Fausett, Fundamentals of neural networks: architectures, algorithms, and applications, vol. 3. prentice-Hall Englewood Cliffs, 1994.
[13] Y. A. Lesnussa, S. Latuconsina, and E. R. Persulessy, “Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA (Studi kasus: Prediksi Prestasi Siswa SMAN 4 Ambon),†J. Mat. Integr. ISSN, vol. 1412, p. 6184, 2015.
[14] Y. A. Lesnussa, L. J. Sinay, and M. R. Idah, “Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Penyebaran Penyakit Demam Berdarah Dengue (DBD) di Kota Ambon,†J. Mat. Integr., vol. 13, no. 2, pp. 63–72, 2017.
[15] A. Hasim, “Prakiraan Beban Listrik Kota Pontianak Dengan Jaringan Syaraf Tiruan (Artificial Neural Network).†IPB, Bogor (Tesis S2), 2008.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Willy Riyadi, Jasmir Jasmir, Performance Prediction of Airport Traffic Using LSTM and CNN-LSTM Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Ni Wayan Sumartini Saraswati, I Gusti Ayu Agung Diatri Indradewi, Recognize The Polarity of Hotel Reviews using Support Vector Machine , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Nella Rosa Sudianjaya, Chastine Fatichah, Segmentation and Classification of Breast Cancer Histopathological Image Utilizing U-Net and Transfer Learning ResNet50 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Rizky Hafizh Jatmiko, Yoga Pristyanto, Investigating The Effectiveness of Various Convolutional Neural Network Model Architectures for Skin Cancer Melanoma Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Mamluatul Hani'ah, Moch Zawaruddin Abdullah, Wilda Imama Sabilla, Syafaat Akbar, Dikky Rahmad Shafara, Google Trends and Technical Indicator based Machine Learning for Stock Market Prediction , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- I Putu Hariyadi, Akbar Juliansyah, Analisa Penerapan Private Cloud Computing Berbasis Proxmox Virtual Environment Sebagai Media Pembelajaran Praktikum Manajemen Jaringan , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
- Muhammad Zaki Wiryawan, Didik Dwi Prasetya, Anik Nur Handayani, Tsukasa Hirashima, Wahyu Styo Pratama, Lalu Ganda Rady Putra, Enhancing Semantic Similarity in Concept Maps Using LargeLanguage Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Pardomuan Robinson Sihombing, Istiqomatul Fajriyah Yuliati, Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Faisal Reza Pradhana, Ilham Mufandi, Aziz Musthafa, Dian Afif Arifah, Khairul Munzilin Al Kahfi, Implementation of Conversational Artificial Intelligence in a3-Dimensional Game onWaste Impact , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- sayuti rahman, Marwan Ramli, Arnes Sembiring, Muhammad Zen, Rahmad B.Y Syah, Normalization Layer Enhancement in Convolutional Neural Network for Parking Space Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
You may also start an advanced similarity search for this article.
.png)











