DenseNet Architecture for Efficient and Accurate Recognition of Javanese Script Hanacaraka Character
DOI:
https://doi.org/10.30812/matrik.v23i2.3855Keywords:
Convolution Neural Network, Character Recognition, Cultural Heritage Preservation, Densenet, Javanese Hanacaraka ScriptAbstract
This study introduced a specifically optimized DenseNet architecture for recognizing Javanese Hanacaraka characters, focusing on enhancing efficiency and accuracy. The research aimed to preserve and celebrate Java’s rich cultural heritage and historical significance through the development of precise character recognition technology. The method used advanced techniques within convolutional neural networks (CNN) to integrate feature extraction across densely connected layers efficiently. The result of this study was that the developed model achieved a training accuracy of 100% and a validation accuracy of approximately 99.50% after 30 training epochs. Furthermore, when tested on previously unseen datasets, the model exhibited exceptional accuracy, precision, recall, and F1-score, reaching 100%. These findings underscored the remarkable capability of DenseNet architecture in character recognition, even across novel datasets, suggesting significant potential for automating Javanese Hanacaraka text processing across various applications, ranging from text recognition to digital archiving. The conclusion drawn from this study suggests that optimizing DenseNet architecture can be a significant step in preserving and developing character recognition technology for Javanese
Downloads
References
[2] J. Sukoyo, E. S. Utami, and E. Kurniati, “The Development of Montessori-Based Javanese Script Learning Model,†Proceedings
of the 2nd International Conference on Innovation in Education and Pedagogy (ICIEP 2020), vol. 619, no. Iciep 2020, pp. 99–
102, 2022.
[3] J. D. Kelleher, The Deep Learning, 2019.
[4] A. Dhillon and G. K. Verma, “Convolutional neural network: a review of models, methodologies and applications to object
detection,†Progress in Artificial Intelligence, vol. 9, no. 2, pp. 85–112, 2020, doi: 10.1007/s13748-019-00203-0.
[5] N. P. Sutramiani, N. Suciati, and D. Siahaan, “Transfer Learning on Balinese Character Recognition of Lontar Manuscript Using
MobileNet,†ICICoS 2020 - Proceeding: 4th International Conference on Informatics and Computational Sciences, pp. 0–4,
2020, doi: 10.1109/ICICoS51170.2020.9299030.
[6] S. K. C and C. Nattee, “Handwritten Alphanumeric Character Recognition,†vol. 12, no. 1, pp. 20–30, 2023, doi:
10.5072/FK26H4PV9J.2023.05.08.001.
[7] V. Madane, K. Ovhal, and M. Bhong, “Handwriting Recognition Using Artificial Intelligence Neural Network and Image
Processing,†International Research Journal of Modernization in Engineering Technology and Science, no. 03, pp. 1432–1447,
2023, doi: 10.56726/irjmets34395.
[8] S. F. M¨uller-Cleve, V. Fra, L. Khacef, A. Peque˜no-Zurro, D. Klepatsch, E. Forno, D. G. Ivanovich, S. Rastogi, G. Urgese,
F. Zenke, and C. Bartolozzi, “Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic
hardware,†Frontiers in Neuroscience, vol. 16, 2022, doi: 10.3389/fnins.2022.951164.
[9] U. BS and U. K, “a Review Paper on Ocr Using Convolutional Neural Networks,†International Journal of Engineering Applied
Sciences and Technology, vol. 7, no. 7, pp. 102–106, 2022, doi: 10.33564/ijeast.2022.v07i07.018.
[10] M. F. Muhdalifah, “Pooling Comparison in CNN Architecture for Javanese Script Classification,†International Journal of
Informatics and Computation, vol. 3, no. 2, p. 15, 2022, doi: 10.35842/ijicom.v3i2.30.
[11] A. Budiman, A. Fadlil, and R. Umar, “Identification of Learning Javanese Script Handwriting Using Histogram Chain Code,â€
EDUMASPUL: Jurnal Pendidikan, vol. 7, no. 1, pp. 147–153, 2023.
[12] M. A. Rasyidi, T. Bariyah, Y. I. Riskajaya, and A. D. Septyani, “Classification of handwritten javanese script using random
forest algorithm,†Bulletin of Electrical Engineering and Informatics, vol. 10, no. 3, pp. 1308–1315, 2021, doi:
10.11591/eei.v10i3.3036.
[13] D. R. Sarvamangala and R. V. Kulkarni, “Convolutional neural networks in medical image understanding: a survey,†Evolutionary
Intelligence, vol. 15, no. 1, pp. 1–22, 2022, doi: 10.1007/s12065-020-00540-3.
[14] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, A survey of the recent architectures of deep convolutional neural networks.
Springer Netherlands, 2020, vol. 53, no. 8.
[15] Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky, and Q. M. U. Haq, “Understanding of Convolutional
Neural Network (CNN): A Review,†International Journal of Robotics and Control Systems, vol. 2, no. 4, pp. 739–748,
2022, doi: 10.31763/ijrcs.v2i4.888.
[16] S. Singh and D. Schicker, “Seven Basic Expression Recognition Using ResNet-18,†pp. 1–3, 2021.
[17] D. Sinha and M. El-Sharkawy, “Thin MobileNet: An Enhanced MobileNet Architecture,†2019 IEEE 10th Annual Ubiquitous
Computing, Electronics and Mobile Communication Conference, UEMCON 2019, pp. 0280–0285, 2019, doi: 10.1109/UEMCON47517.2019.8993089.
[18] D. Gupta, A. Gupta, R. Gandhi, P. Vishwavidyalaya, and S. S. Gupta, “Identification of Alzheimer’s disease from MRI image
employing a probabilistic deep learning-based approach and the VGG16,†2023.
[19] W. Gong, X. Zhang, B. Deng, and X. Xu, “Palmprint recognition based on convolutional neural network-alexnet,†Proceedings
of the 2019 Federated Conference on Computer Science and Information Systems, FedCSIS 2019, vol. 18, pp. 313–316, 2019,
doi: 10.15439/2019F248.
[20] N. S. Shadin, S. Sanjana, and N. J. Lisa, “COVID-19 Diagnosis from Chest X-ray Images Using Convolutional Neural Network(
CNN) and InceptionV3,†2021 International Conference on Information Technology, ICIT 2021 - Proceedings, vol. 3, no.
September 2012, pp. 799–804, 2021, doi: 10.1109/ICIT52682.2021.9491752.
[21] G. S. Nugraha, M. I. Darmawan, and R. Dwiyansaputra, “Comparison of CNN’s Architecture GoogleNet, AlexNet, VGG-16,
Lenet -5, Resnet-50 in Arabic Handwriting Pattern Recognition,†Kinetik: Game Technology, Information System, Computer
Network, Computing, Electronics, and Control, vol. 4, no. 2, 2023, doi: 10.22219/kinetik.v8i2.1667.
[22] Z. Zhong, M. Zheng, H. Mai, J. Zhao, and X. Liu, “Cancer image classification based on DenseNet model,†Journal of Physics:
Conference Series, vol. 1651, no. 1, 2020, doi: 10.1088/1742-6596/1651/1/012143.
[23] G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Q. Weinberger, “Convolutional Networks with Dense Connectivity,â€
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp. 8704–8716, 2022, doi:
10.1109/TPAMI.2019.2918284.
[24] Z. Shi, M. Chen, and Z. Wu, “Hyperspectral Image Classification Based on Dual-Scale Dense Network with Efficient Channel
Attentional Feature Fusion,†Electronics (Switzerland), vol. 12, no. 13, 2023, doi: 10.3390/electronics12132991.
[25] S. A. Albelwi, “Deep Architecture based on DenseNet-121 Model for Weather Image Recognition,†International Journal of
Advanced Computer Science and Applications, vol. 13, no. 10, pp. 559–565, 2022, doi: 10.14569/IJACSA.2022.0131065.
[26] E. E.-D. Hemdan, M. A. Shouman, and M. E. Karar, “COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose
COVID-19 in X-Ray Images,†2020.
[27] M. M. Hasan, H. Ali, M. F. Hossain, and S. Abujar, “Preprocessing of Continuous Bengali Speech for Feature Extraction,†2020
11th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2020, pp. 1–4, 2020,
doi: 10.1109/ICCCNT49239.2020.9225469.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Ahmat Adil, ANALISA SPASIAL PEMETAAN LOKASI WISATA AGRO (STUDI KASUS DI LOMBOK BARAT) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 1 (2016)
- Heru Pramono Hadi, Eko Hari Rachmawanto, Rabei Raad Ali, Comparison of DenseNet-121 and MobileNet for Coral Reef Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Jusmita Weriza, Ismail Husein, Noranizamardia Noranizamardia, M Fakhariza, Khairan Marzuki, Development of OnlineWeb-Based New Student Graduation Application in Junior High School , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Ni Wayan Sumartini Saraswati, I Gusti Ayu Agung Diatri Indradewi, Recognize The Polarity of Hotel Reviews using Support Vector Machine , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Angelina Ervina Jeanette Egeten, Lya Santi Rahayu, Riansyah Rafsanjani, Analisis dan Perancangan Sistem Reservasi Paket Wisata Untuk Internal Karyawan PT. Garuda Maintenance Facility (GMF) Tbk , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Yarza Aprizal, Rabin Ibnu Zainal, Afriyudi Afriyudi, Perbandingan Metode Backpropagation dan Learning Vector Quantization (LVQ) Dalam Menggali Potensi Mahasiswa Baru di STMIK PalComTech , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Angelina Ervina Jeanette Egeten, Siska A. Damanik, Ika Agustina, Marcelina Panggabean, Perancangan Sistem Informasi Posyandu Berbasis Web Pada Yayasan Kalyanamitra Di Jakarta Timur Untuk Mendukung Program Bidang Pendampingan Komunitas , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Angga Rahagiyanto, Identifikasi Ekstraksi Fitur untuk Gerakan Tangan dalam Bahasa Isyarat (SIBI) Menggunakan Sensor MYO Armband , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Faisal Reza Pradhana, Ilham Mufandi, Aziz Musthafa, Dian Afif Arifah, Khairul Munzilin Al Kahfi, Implementation of Conversational Artificial Intelligence in a3-Dimensional Game onWaste Impact , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Samsurizal Samsurizal, Arif Nur Afandi, Mohamad Rodhi Faiz, Artificial Intelligence Enhanced Direct Current Fast ChargingIntegration for Electric Vehicles on 20 kV Grids: A Technical andOntological Study , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Imam Riadi, Abdul Fadlil, Muhammad Amirul Mu'min, OWASP Framework-based Network Forensics to Analyze the SQLi Attacks on Web Servers , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Joko Supriyanto, Abdul Fadlil, Sunardi Sunardi, Pengujian Kualitatif Aplikasi Informasi Gempa Bumi dalam Bentuk Suara untuk Tunanetra , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Alya Masitha, Muhammad Kunta Biddinika, Herman Herman, K Value Effect on Accuracy Using the K-NN for Heart Failure Dataset , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
.png)











