SEGMENTASI CITRA PEMBULUH DARAH RETINA MENGGUNAKAN METODE DETEKSI GARIS MULTI SKALA
DOI:
https://doi.org/10.30812/matrik.v15i1.28Keywords:
segmentation, image, retinal blood vessels, multi scale line detectorAbstract
Changes in retinal blood vessels feature a sign of serious illnesses such as heart disease and stroke. Therefore, the analysis of retinal vascular features can help in detecting these changes and allow patients to take preventive measures at an early stage of this disease. Automation of this process will help reduce the costs associated with the specialist and eliminate inconsistencies that occur in manual detection system. Among the retinal image analysis, image extraction retinal blood vessels is a crucial step before measurement. In this paper, we use an effective method of automatically extracting the blood vessels of the color images of the retina using a length detector line in several different scales, in order to maintain the strength and eliminates the weaknesses of each detector individual lines, the result of the detection lines on various scales combined to produce a segmentation of each image of the retina. The performance of the method is evaluated quantitatively using DRIVE dataset. Test results show that this method achieve high accuracy is 0.9407 approaching measurement results manually by experts, and this method produces accurate segmentation in detecting retinal blood vessels with effciency by quickly segmenting time is 2.5 seconds per image.
Downloads
References
[2]. T. Y. Wong, R. McIntosh, Hypertensive retinopathy signs as risk indicators of cardiovascular morbidity and mortality, British medical bulletin 73 (1) (2005) 57-70.
[3]. E. J. Sussman, W. G. Tsiaras, K. A. Soper, Diagnosis of diabetic eye disease, JAMA: the journal of the American Medical Association 247 (23) (1982) 3231-3234.
[4]. T. Y. Wong, R. Klein, D. J. Couper, L. S. Cooper, E. Shahar, L. D. Hubbard, M. R.Wo_ord, A. R. Sharrett, Retinal microvascular abnormalities and incident stroke: the atherosclerosis risk in communities study, The Lancet 358 (9288) (2001) 1134-1140.
[5]. T. Y. Wong, R. Klein, A. R. Sharrett, B. B. Duncan, D. J. Couper, B. E. K. Klein, L. D. Hubbard, F. J. Nieto, Retinal arteriolar diameter and risk for hypertension, Annals of internal medicine 140 (4) (2004) 248-255.
[6]. J. Staal, M. D. Abrmo_, M. Niemeijer, M. A. Viergever, B. van Ginneken, Ridge-based vessel segmentation in color images of the retina, Medical Imaging, IEEE Transactions on 23 (4) (2004) 501-509.
[7]. J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, M. J. Cree, Retinal vessel segmentation using the 2-d gabor wavelet and supervised classi_cation, Medical Imaging, IEEE Transactions on 25 (9) (2006) 1214-1222.
[8]. E. Ricci, R. Perfetti, Retinal blood vessel segmentation using line operators and support vector classi_ cation, Medical Imaging, IEEE Transactions on 26 (10) (2007) 1357-1365.
[9]. K. Fritzsche, A. Can, H. Shen, C. Tsai, J. Turner, H.L.Tanenbuam, C.V. Stewart, B. Roysam, J.S. Suri, S.Laxminarayan, Automated model based segmentation,tracing and analysis of retinal vasculature from digital fundus images, in: State-of-TheArt Angiography, Applications and Plaque Imaging Using MR, CT Ultrasound and X-rays, Academic Press, 2003, pp. 225–298.
[10]. E. Ricci, R. Perfetti, Retinal blood vessel segmentation using line operators and support vector classication, Medical Imaging, IEEE Transactions on 26 (10) (2007) 1357-1365.
[11]. Uyen T. V. Nguyen, Alauddin Bhuiyan, Laurence A. F. Park, Kotagiri Ramamohanarao, An Efective Retinal Blood Vessel Segmentation Method using Multi-scale Line Detection, article in pattern recognation – ResearchGate. On 1 (2012).
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Angga Rahagiyanto, Identifikasi Ekstraksi Fitur untuk Gerakan Tangan dalam Bahasa Isyarat (SIBI) Menggunakan Sensor MYO Armband , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- budi rahmani, Ruliah Ruliah, A Novel Algorithm of Distance Calculation Based-on Grid-Edge-Depth-Map and Gyroscope for Visually-Impaired , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Didih Rizki Chandranegara, Faras Haidar Pratama, Sidiq Fajrianur, Moch Rizky Eka Putra, Zamah Sari, Automated Detection of Breast Cancer Histopathology Image Using Convolutional Neural Network and Transfer Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Firda Yunita Sari, Maharani sukma Kuntari, Hani Khaulasari, Winda Ari Yati, Comparison of Support Vector Machine Performance with Oversampling and Outlier Handling in Diabetic Disease Detection Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Muhammad Zaki Wiryawan, Didik Dwi Prasetya, Anik Nur Handayani, Tsukasa Hirashima, Wahyu Styo Pratama, Lalu Ganda Rady Putra, Enhancing Semantic Similarity in Concept Maps Using LargeLanguage Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Alya Masitha, Muhammad Kunta Biddinika, Herman Herman, K Value Effect on Accuracy Using the K-NN for Heart Failure Dataset , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Matrissya Hermita, Budi Hermana, Suryadi Harmanto, Adang Suhendra, Munawir Pasaribu, Social Media Engagement and Student’s Intention in Indonesian Higher Education Using Unified Theory of Acceptance and Use of Technology , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Muhammad Vicky Al Hasri, Endah Sudarmilah, Sistem Informasi Pelayanan Administrasi Kependudukan Berbasis Website Kelurahan Banaran , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Paska Marto Hasugian, Devy Mathelinea, Siska Simamora, Pandi Barita Nauli Simangunsong, Comparative Evaluation of Data Clustering Accuracy through Integration of Dimensionality Reduction and Distance Metric , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Fristi Riandari, Hengki Tamando Sihotang, Husain Husain, Forecasting the Number of Students in Multiple Linear Regressions , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ahmat Adil, Bambang Krismono Triwijoyo, Sistem Informasi Geografis Pemetaan Jaringan Irigasi dan Embung di Lombok Tengah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Bambang Krismono Triwijoyo, Ahmat Adil, Anthony Anggrawan, Convolutional Neural Network With Batch Normalization for Classification of Emotional Expressions Based on Facial Images , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Dadang Priyanto, Bambang Krismono Triwijoyo, Deny Jollyta, Hairani Hairani, Ni Gusti Ayu Dasriani, Data Mining Earthquake Prediction with Multivariate Adaptive Regression Splines and Peak Ground Acceleration , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Anthony Anggrawan, Raisul Azhar, Bambang Krismono Triwijoyo, Mayadi Mayadi, Developing Application in Anticipating DDoS Attacks on Server Computer Machines , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Ervina Farijki, Bambang Krismono Triwijoyo, SEGMENTASI CITRA MRI MENGGUNAKAN DETEKSI TEPI UNTUK IDENTIFIKASI KANKER PAYUDARA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 2 (2016)
- Bambang Krismono Triwijoyo, Model Fast Tansfer Learning pada Jaringan Syaraf Tiruan Konvolusional untuk Klasifikasi Gender Berdasarkan Citra Wajah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
.png)











