Support Vector Machine for Predicting Candlestick Chart Movement on Foreign Exchange
DOI:
https://doi.org/10.30812/matrik.v22i2.2676Keywords:
Candlestick Chart, Classification, Foreign Exchange, Machine Learning, Prediction, Support Vector MachineAbstract
Foreign Exchange, commonly called Forex, is a form of investment in the non-real sector in great demand. Forex is a marketplace that specializes in foreign exchange trading. Technology advancements have made it easy to monitor investment conditions in real time and present them in an easyto - understand graphical form. As a result, predictions are closely related to investment, starting from market sentiment and economic conditions to technical matters. One of the Artificial Intelligence methods that can be used in classifying is the Support Vector Machine (SVM). SVM is a machine learning classification method based on the Structural Risk Minimization (SRM) principle to find the best hyperplane that separates two classes in the input space that determines the classification decision function by minimizing empirical risk. This study used candlestick patterns to predict foreign exchange chart movements using the Support Vector Machine (SVM) classification method. The purpose of this study was to measure the accuracy of the Support Vector Machine method in making predictions using candlestick patterns so that it can assist traders in making decisions in forex trading. The accuracy level obtained from the data classification results reached 90.72% with a precision of 87.69%. With a relatively good level of accuracy, the Support Vector Machine (SVM) method can be used to predict chart movements in foreign exchange using candlesticks to indicate the current trend’s direction.
Downloads
References
Regression Analysis Model,†Proceedings - 2020 16th Dahe Fortune China Forum and Chinese High-Educational Management
Annual Academic Conference, DFHMC 2020, pp. 180–183, 2020.
[2] M. Liang, S. Wu, X. Wang, and Q. Chen, “A Stock Time Series Forecasting Approach Incorporating Candlestick Patterns and
Sequence Similarity,†Expert Systems with Applications, vol. 205, p. 117595, nov 2022.
[3] M. D. Stasiak, “CandlestickThe Main Mistake of Economy Research in High Frequency Markets,†International Journal of
Financial Studies, vol. 8, no. 4, pp. 1–15, 2020.
[4] C. C. Hung and Y. J. Chen, “DPP: Deep Predictor for Price Movement from Candlestick Charts,†PLoS ONE, vol. 16, no. 6
June 2021, pp. 1–14, 2021.
[5] N. Nuraeni, P. Astuti, O. Irnawati, I. Darwati, and D. D. Harmoko, “High Accuracy in Forex Predictions Using the Neural
Network Method Based on Particle Swarm Optimization,†Journal of Physics: Conference Series, vol. 1641, no. 1, 2020.
[6] S. Theodoridis, Machine learning, 2nd ed. Academic Press, 2020, vol. 45, no. 13.
[7] L. Mohan, J. Pant, P. Suyal, and A. Kumar, “Support Vector Machine Accuracy Improvement with Classification,†Proceedings
- 2020 12th International Conference on Computational Intelligence and Communication Networks, CICN 2020, pp. 477–481,
2020.
[8] A. D. Achmad, “Metode Moving Average dan Metode Support Vector Machine Untuk Prediksi Variabel Meteorologi,†vol. 4,
no. 1, pp. 45–50, 2017.
[9] S. Saikin, S. Fadli, and M. Ashari, “Optimization of Support Vector Machine Method Using Feature Selection to Improve
Classification Results,†JISA(Jurnal Informatika dan Sains), vol. 4, no. 1, pp. 22–27, 2021.
[10] P. Aggarwal and A. K. Sahani, “Comparison of Neural Networks for Foreign Exchange Rate Prediction,†2020 IEEE 15th
International Conference on Industrial and Information Systems, ICIIS 2020 - Proceedings, no. 978, pp. 415–419, 2020.
[11] R. M. and K. L.G., “Predicting Foreign Exchange using Digital Signal Processing,†British Journal of Computer, Networking
and Information Technology, vol. 4, no. 2, pp. 1–11, 2021.
[12] M. Islam and E. Hossain, “Foreign Exchange Currency Rate Prediction Using a GRU-LSTM Hybrid Network,†Soft Computing
Letters, vol. 3, no. August 2020, p. 100009, 2021.
[13] A. Ramadhan, I. Palupi, and B. A. Wahyudi, “Candlestick Patterns Recognition Using CNN-LSTM Model to Predict Financial
Trading Position in Stock Market,†Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, pp. 339–347, 2022.
[14] A. N. Puteri, A. Arizal, and A. D. Achmad, “Feature Selection Correlation-Based pada Prediksi Nasabah Bank Telemarketing
untuk Deposito,†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 2, pp. 335–342, 2021.
[15] D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan
Algoritma K-NN,†Computer Engineering, Science and System Journal, vol. 4, no. 1, p. 78, 2019.
[16] J. Cervantes, F. Garcia-Lamont, L. Rodr´ıguez-Mazahua, and A. Lopez, “A Comprehensive Survey on Support Vector Machine
Classification: Applications, Challenges and Trends,†Neurocomputing, vol. 408, no. xxxx, pp. 189–215, 2020.
[17] D. A. Pisner and D. M. Schnyer, “Support Vector Machine,†in Machine Learning. Elsevier, 2020, pp. 101–121.
[18] A. Alman, A. Lawi, and Z. Tahir, “Pattern Recognition of Human Activity Based on Smartphone Data Sensors Using SVM
Multiclass,†2019.
[19] A. J. Makrufi,W. Fawwaz, and A. Maki, “Support Vector Machine with Firefly Optimization Algorithm for Apple Fruit Disease
Classification,†vol. 22, no. 1, pp. 179–190, 2022.
[20] R. Satpathy, S. N. Mohanty, S. Satpathy, T. Choudhury, and X. Zhang, Data Analytics in Bioinformatics: A Machine Learning
Perspective. United States of America: Wiley Intercience, 2021.
[21] A. N. Puteri, Dewiani, and Z. Tahir, “Comparison of Potential Telemarketing Customers Predictions with a Data Mining Approach
using the MLPNN and RBFNN Methods,†2019 International Conference on Information and Communications Technology,
ICOIACT 2019, pp. 383–387, 2019.
[22] N. Wayan, S. Saraswati, I. G. Ayu, and A. Diatri, “Recognize the Polarity of Hotel Reviews using Support Vector Machine,â€
vol. 22, no. 1, pp. 25–36, 2022.
[23] [11] H. Hairani, A. Anggrawan, A. I. Wathan, K. A. Latif, K. Marzuki, and M. Zulfikri, “The Abstract of Thesis Classifier by Using
Naive Bayes Method,†in 2021 International Conference on Software Engineering & Computer Systems and 4th International
Conference on Computational Science and Information Management (ICSECS-ICOCSIM), no. August. IEEE, aug 2021, pp.
312–315. [Online]. Available: https://ieeexplore.ieee.org/document/9537006/
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Debby Ummul Hidayah, Pungkas Subarkah, Media Pembelajaran Tentang Klasifikasi Binatang Berbasis Video Animasi 3 Dimensi di SMP Negeri 2 Wangon , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Putri Jafar, Dolly Indra, Fitriyani Umar, Color Feature Extraction for Grape Variety Identification: Naïve Bayes Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Agus Salim, Baginda Oloan Lubis, Pemilihan Merek Beras yang Diminati Konsumen Studi Kasus CV Beras Alami Menggunakan AHP , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Baiq Rima Mozarita Erdiani, Aryo Yudo Husodo, Ida Bagus Ketut Widiartha, Novel Application of K-Means Algorithm for Unique Sentiment Clustering in 2024 Korean Movie Reviews on TikTok Platform , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Mudafiq Riyan Pratama, Muhammad Yunus, Sistem Deteksi Struktur Kalimat Bahasa Arab Menggunakan Algoritma Light Stemming , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Muchammad Ismail Hamzah, DESAIN DAN IMPLEMENTASI WEB SMP ISLAM NGEBRUK MENGGUNAKAN PHP DAN MYSQL , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 2 (2017)
- Angga Rahagiyanto, Identifikasi Ekstraksi Fitur untuk Gerakan Tangan dalam Bahasa Isyarat (SIBI) Menggunakan Sensor MYO Armband , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 1 (2019)
- Djoko Kuswanto, Athirah Hersyadea Alifah Putri, Ellya Zulaikha, Tedy Apriawan, Yuri Pamungkas, Evi Triandini, Nadya Paramitha Jafari, Thassaporn Chusak, Cranioplasty Training Innovation Using Design Thinking: AugmentedReality and Interchangeability-Based Mannequin Prototype , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Pahrul Irfan, APLIKASI ENKRIPSI CITRA MENGGUNAKAN ALGORITMA KRIPTOGRAFI ARNOLD CAT MAP Dan LOGISTIC MAP , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 1 (2016)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Annisa Nurul Puteri, Arizal Arizal, Andini Dani Achmad, Feature Selection Correlation-Based pada Prediksi Nasabah Bank Telemarketing untuk Deposito , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)