MEDIA BANTU PEMBELAJARAN IPA SMP SEBAGAI BEKAL MENGHADAPI UJIAN NASIONAL (UN)
DOI:
https://doi.org/10.30812/matrik.v15i1.25Keywords:
Media, Learning, Ujian National (UN)Abstract
Ujian National (UN ) is one tool evaluation issued by the government which is the appropriate measurement tool to measure the level of achievement of educational goals that have been set. One of the challenges for students of schools during the school beforehand through the UN process be it elementary, junior high and high school. As is known, to fnish his previous students have to face the evaluation process, namely Ujian Nasional, and to pass the evaluation of the value of the good is not easy. That requires a media that can help students in the learning process before the Ujian National. Media made using multimedia elements such as text, images, sound, and animation. The development method used by the authors in this study is the method ADDIE which has fve stages, namely stage Analysis, Design, Development, Implementation, and Evaluation. The instructional media of Natural Science for Yunior School to prepare UN †From the results obtained during this study, the authors conclude that the media are built to help students in the learning process before facing Ujian National (UN)
Downloads
References
[2] Pusat Bahasa Depdiknas.2002. Kamus Besar Bahasa Indonesia Edisi III. Jakarta: Balai Pustaka
[3] Srini M. Iskandar. (1997). Pendidikan Ilmu Pengetahuan Alam. Jakarta: DIKTI.
[4] Usman Samatowa. (2006).Bagaimana Membelajarkan IPA di SD. Jakarta: Depdiknas
[5] Alfan Riza, Ebtaryadi.(2012). Hubungan Nilai Ujian Nasional (NUN) SLTP Dan Keterlibatan Dalam Organisasi Pemuda Dengan Prestasi Belajar Alat Ukur Kelas X SMK Taman Siswa Jetis Yogyakarta. S1 thesis, Universitas Negeri Yogyakarta.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Rizky Afrinanda, Lusiana Efrizoni, Wirta Agustin, Rahmiati Rahmiati, Hybrid Model for Sentiment Analysis of Bitcoin Prices using Deep Learning Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Irma Binti Sya'idah, Sugiyarto Surono, Goh Khang Wen, DynamicWeighted Particle Swarm Optimization - Support Vector Machine Optimization in Recursive Feature Elimination Feature Selection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Harri Gunawan, Shinta Esabella, Rancang Bangun Aplikasi Pengenalan Aat Musik Tradisional Sumbawa Berbasis Android , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
- Didit Suhartono, Khairunnisak Nur Isnaini, Strategi Recovery Plan Teknologi Informasi di Perguruan Tinggi Menggunakan Framework NIST SP 800-34 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Annisa Nurul Puteri, Suryadi Syamsu, Topan Leoni Putra, Andita Dani Achmad, Support Vector Machine for Predicting Candlestick Chart Movement on Foreign Exchange , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Christofer Satria, Anthony Anggrawan, Tinjauan Kritis Jurnal Ilmiah: “The Influence of Transformational Leadership and Organizational Culture on Learning Organization: a Comparative Analysis of The it Sector†, MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 1 (2018)
- Arfiani Nur Khusna, Krisvan Patra Delasano, Dimas Chaerul Ekty Saputra, Penerapan User-Based Collaborative Filtering Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Anthony Anggrawan, Mayadi Mayadi, Application of KNN Machine Learning and Fuzzy C-Means to Diagnose Diabetes , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- M Safii, Rika Setiana, Population Prediction Using Multiple Regression and Geometry Models Based on Demographic Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Hepatika Zidny Ilmadina, Muhammad Naufal, Dega Surono Wibowo, Drowsiness Detection Based on Yawning Using Modified Pre-trained Model MobileNetV2 and ResNet50 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Dadang Priyanto, Bambang Krismono Triwijoyo, Deny Jollyta, Hairani Hairani, Ni Gusti Ayu Dasriani, Data Mining Earthquake Prediction with Multivariate Adaptive Regression Splines and Peak Ground Acceleration , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Nurdin Nurdin, Erni Susanti, Hafizh Al-Kautsar Aidilof, Dadang Priyanto, Comparison of Naive Bayes and Dempster Shafer Methods in Expert System for Early Diagnosis of COVID-19 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Deny Jollyta, Prihandoko Prihandoko, Dadang Priyanto, Alyauma Hajjah, Yulvia Nora Marlim, Comparison of Distance Measurements Based on k-Numbers and Its Influence to Clustering , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Dadang Priyanto, Raisul Azhar, SISTEM APLIKASI UNTUK KEAMANAN DATA DENGAN ALGORITMA 'DES' (Data Encryption Standard) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 1 (2016)
- Musta’an Musta’an, Dadang Priyanto, SISTEM INFORMASI PENGADAAN BARANG LANGSUNG BERBASIS CLIENT-SERVER (Study Kasus di Universitas Mataram) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 2 (2016)
.png)











