Implementing K-Nearest Neighbor to Classify Wild Plant Leaf as a Medicinal Plants
DOI:
https://doi.org/10.30812/matrik.v23i1.2220Keywords:
Classification, Gotu Kola Leaves, Image Processing, K-Nearest NeighborAbstract
in leaf shape. Therefore, this study aimed to create a system to help increase public knowledge about wild plant leaves that also function as medicinal plants by the KNN method. Leaves of wild plants, namely Rumput Minjangan, Sambung Rambat, Rambusa, Brotowali, and Zehneria japonica, are also medicinal plants in comparison. Image processing techniques used were preprocessing, image segmentation, and morphological feature extraction. Preprocessing consists of scaling and splitting the RGB components and using an RGB component decomposition process to find the color component that best describes the leaf shape and generate the blue component image. The segmentation process used a thresholding technique with a gray threshold value (T) of less than 150, which best separates objects and backgrounds. Some morphological feature extraction used are area, perimeter, metric, eccentricity, and aspect ratio. Based on the results of this research, the KNN method with variations in K values, namely 13, 15, and 17, obtained a system accuracy of 94.44% with a total of 90% training data and 10% test data. This comparison also affected the increase in system accuracy.
Downloads
References
vol. 7, no. 2, pp. 18–20, 2019.
[2] B. Sun, L. Wu, Y. Wu, C. Zhang, L. Qin, M. Hayashi, M. Kudo, M. Gao, and T. Liu, “Therapeutic Potential of Centella asiatica
and Its Triterpenes: A Review,†Frontiers in Pharmacology, vol. 11, no. September, pp. 1–24, 2020.
[3] I. M. S. Harsa, “Efek Pemberian Ekstrak Daun Pegagan (Centella Asiatica) Terhadap Penyembuhan Luka Sayat Pada Tikus
Putih Jantan (Rattus Norvegicus) Galur Wistar,†Jurnal Ilmiah Kedokteran Wijaya Kusuma, vol. 9, no. 1, pp. 21–27, 2020.
[4] C. A. Mareta, “Efektifitas Pegagan (Centella Asiatica) Sebagai Antioksidan,†Jurnal Medika Hutama, vol. 02, no. 01, pp.
402–406, 2020.
[5] D. Eka, K. Sari, T. Widowati, and N. Atika, “Kelayakan Daun Pegagan ( Centella Asiatica ( L .) Urban) Sebagai Bahan Dasar
Sabun Untuk Kulit Kering,†Beauty and Beauty Health Education Journal, vol. 12, no. 2, pp. 78–85, 2023.
[6] R. I. Borman, R. Napianto, N. Nugroho, D. Pasha, Y. Rahmanto, and Y. E. Pratama Yudoutomo, “Implementation of PCA and
KNN Algorithms in the Classification of Indonesian Medicinal Plants,†in 2021 International Conference on Computer Science,
Information Technology, and Electrical Engineering (ICOMITEE), oct 2021, pp. 46–50.
[7] K. Saputra and S.Wahyuni, “Identifikasi Jenis Tanaman Berdasarkan Ekstraksi Fitur Morfologi Daun Menggunakan K-Nearest
Neighbor,†Jurnal Teknik dan Informatika, vol. 5, no. 1, pp. 24–29, 2018.
[8] S. A. Rosiva Srg, M. Zarlis, and W. Wanayumini, “Identifikasi Citra Daun dengan GLCM (Gray Level Co-Occurence) dan
K-NN (K-Nearest Neighbor),†MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 2, pp.
477–488, 2022.
[9] R. H. Ariesdianto, Z. E. Fitri, A. Madjid, and A. M. Imron, Nanda, “Identifikasi Penyakit Daun Jeruk Siam Menggunakan
K-Nearest Neighbor,†Jurnal Ilmu Komputer dan Informatika (JIKI), vol. 1, no. 2, pp. 133–140, 2021.
[10] L. N. Sahenda, A. A. Ubaidillah, Z. E. Fitri, A. Madjid, and A. M. N. Imron, “Application of Feature Selection for Identification
of Cucumber Leaf Diseases (Cucumis sativa L.),†JISA (Jurnal Informatika dan Sains), vol. 04, no. 02, pp. 173–178, 2021.
[11] B. A. Prasetya, Z. E. Fitri, A. Madjid, and A. M. N. Imron, “Ensiklopedia Digital Varietas Ubi Jalar Berdasarkan Klasifikasi
Citra Daun Menggunakan KNearest Neighbor,†Elektrika, vol. 14, no. 1, pp. 1–6, 2022.
[12] N. E. Paulina, Z. E. Fitri, A. Madjid, and A. M. N. Imron, “Klasifikasi Kerusakan Mutu Tomat Berdasarkan Seleksi Fitur
Menggunakan K-Nearest Neighbor,†MIND (Multimedia Artificial Intelligent Networking Database) Journa, vol. 6, no. 2, pp.
144–154, 2021.
[13] M. J. Roldan, T. Chin, Y. Tsai, A. L. Castillo, and O. B. Villaflores, “Cytotoxic and Angiosuppressive Potentials of Zehneria
japonica (Thunb. ex Murray) S.K. Chen (Cucurbitaceae) Crude Leaf Extracts,†Philippine Journal of Health Research and
Development, vol. 22, no. 01, pp. 43–52, 2018.
[14] M. M. Sheam, Z. Haque, and Z. Nain, “Towards the antimicrobial, therapeutic and invasive properties of mikania micrantha
knuth: A brief overview,†Journal of Advanced Biotechnology and Experimental Therapeutics, vol. 3, no. 2, pp. 92–101, 2020.
[15] W. Wiharto, F. H. Nashrullah, E. Suryani, U. Salamah, N. P. T. Prakisya, and S. Setyawan, “Texture-Based Feature Extraction
using Gabor Filters to Detect Diseases of Tomato Leaves,†Revue d’Intelligence Artificielle, vol. 35, no. 4, pp. 331–339, 2021.
[16] P. Rosyani and S. Saprudin, “Deteksi Citra Bunga Menggunakan Analisis Segmentasi Fuzzy C-Means dan Otsu Threshold,â€
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 1, pp. 29–36, 2020.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Imanuddin Imanuddin, Fachrid Alhadi, Raza Oktafian, Ahmad Ihsan, Deteksi Mata Mengantuk pada Pengemudi Mobil Menggunakan Metode Viola Jones , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Siti Ummi Masruroh, Andrew Fiade, Muhammad Ikhsan Tanggok, Rizka Amalia Putri, Luigi Ajeng Pratiwi, Convolutional Neural Network for Colorization of Black and White Photos , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Alya Masitha, Muhammad Kunta Biddinika, Herman Herman, K Value Effect on Accuracy Using the K-NN for Heart Failure Dataset , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Rizky Hafizh Jatmiko, Yoga Pristyanto, Investigating The Effectiveness of Various Convolutional Neural Network Model Architectures for Skin Cancer Melanoma Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Miftahus Sholihin, Mohd Farhan Bin Md. Fudzee, Lilik Anifah, A Novel CNN-Based Approach for Classification of Tomato Plant Diseases , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Bob Subhan Riza, Jufriadif Na'am, Sumijan Sumijan, Tuberculosis Extra Pulmonary Bacilli Detection System Based on Ziehl Neelsen Images with Segmentation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Anas Syaifudin, Purwanto Purwanto, Heribertus Himawan, M. Arief Soeleman, Customer Segmentation with RFM Model using Fuzzy C-Means and Genetic Programming , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Heru Pramono Hadi, Eko Hari Rachmawanto, Rabei Raad Ali, Comparison of DenseNet-121 and MobileNet for Coral Reef Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Sri Suwarno, Erick Kurniawan, Multi-Level Pooling Model for Fingerprint-Based Gender Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Taufik Hidayat, Mohammad Ridwan, Muhamad Fajrul Iqbal, Sukisno Sukisno, Robby Rizky, William Eric Manongga, Determining Toddler's Nutritional Status with Machine Learning Classification Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
You may also start an advanced similarity search for this article.