Recognize The Polarity of Hotel Reviews using Support Vector Machine
DOI:
https://doi.org/10.30812/matrik.v22i1.1848Keywords:
Hotel Reviews, K-Fold Cross Validation, Support Vector Machines, Text Classification, TripAdvisor ReviewAbstract
A brand is very dependent on consumer perceptions of the product or services. In assessing consumer perceptions of products and services, companies are often faced with data analysis problems. One of the data that is very useful to produce a picture of consumer perceptions of the products and services is review data. So that the company's ability to process review data means that the company has a picture of the strength of the brand it has. Some of the most popular machine learning algorithms for creating text classification models include the naive Bayes family of algorithms, support vector machines (SVM) and deep learning algorithms. In this research, SVM has been proven to be a reliable method in pattern recognition. In particular, this study aims to produce a model that can be used to classify the polarity of hotel reviews automatically. The experimental data comes from review data on hotels in Europe sourced from TripAdvisor with a total of 38000 reviews. We also measure the quality of the classification engine model. The test results of the SVM model built from hotel review data are quite good. The average accuracy of the classification engine is 92.48%. Because the recall and precision values ​​are balanced, the accuracy value is considered sufficient to describe the quality of the classification.
Downloads
References
[2] N. W. S. Saraswati, K. K. Widiartha, dan L. P. A. Prapitasari, “Vector machine to predict student retention: A computerized approach,†J. Phys. Conf. Ser., vol. 1469, no. 1, 2020, doi: 10.1088/1742-6596/1469/1/012045.
[3] I. G. A. A. D. Indradewi, N. W. S. Saraswati, dan N. W. Wardani, “COVID-19 Chest X-Ray Detection Performance Through Variations of Wavelets Basis Function,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, hal. 31–42, 2021, doi: 10.30812/matrik.v21i1.1089.
[4] N. W. S. Saraswati, N. W. Wardani, dan I. G. A. A. D. Indradewi, “Detection of Covid Chest X-Ray using Wavelet and Support Vector Machines,†Int. J. Eng. Emerg. Technol., vol. 5, no. 2, hal. 116–121, 2020, doi: https://doi.org/10.24843/IJEET.2020.v05.i02.p019.
[5] A. Darmawan, “Penerapan Model Support Vector Machine Text Mining Pada Komentar Review Smartphone Android Vs Blackberry Dengan Teknik Optimasi Genetic Algorithm,†Fakt. Exacta, vol. 8, no. 2, hal. 100–115, 2015, doi: http://dx.doi.org/10.30998/faktorexacta.v8i2.313.
[6] N. W. S. Saraswati, “Text mining dengan metode naïve bayes classifier dan support vector machines untuk sentiment analysis,†Udayana, 2011.
[7] F. Fatmawati dan M. Affandes, “Klasifikasi Keluhan Menggunakan Metode Support Vector Machine (SVM) Pada Akun Facebook Group iRaise Helpdesk,†J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 1, hal. 24, 2018, doi: 10.24014/coreit.v3i1.3552.
[8] F. D. Ananda dan Y. Pristyanto, “Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 2, hal. 407–416, 2021, doi: 10.30812/matrik.v20i2.1130.
[9] S. Efendi dan P. Sihombing, “Sentiment Analysis of Food Order Tweets to Find Out Customer Demographic Profile using SVM,†Matrik J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, 2022, doi: 10.30812/matrik.v21i3.1898.
[10] C. Darujati, “Perbandingan Klasifikasi Dokumen Teks Menggunakan Metode Naïve Bayes Dengan K-Nearest Neighbor,†Univ. Narotama, vol. 13, no. 1, hal. 1–9, 2010.
[11] C. F. Suharno, M. A. Fauzi, dan R. S. Perdana, “Klasifikasi Teks Bahasa Indonesia Pada Dokumen Pengaduan Sambat Online Menggunakan Metode K-Nearest Neighbors Dan Chi-square,†Syst. Inf. Syst. Informatics J., vol. 3, no. 1, hal. 25–32, 2017, doi: 10.29080/systemic.v3i1.191.
[12] J. Harsono, R. M. No, P. Minggu, dan J. S. Jakarta, “Klasifikasi Teks Berbahasa Indonesia Pada Artikel Berita Menggunakan Metode K-Nearest Neighbor Dengan Fungsi Squared Euclidean Distance Classification of Indonesian Text on News Articles Using K-Nearest Neighbor Method With Squared,†BRITech (Jurnal Ilm. Ilmu Komputer, Sains dan Teknol. Ter., vol. 1, no. 2, hal. 60–65, 2020.
[13] A. Ridok dan R. Latifah, “Klasifikasi Teks Bahasa Indonesia Pada Corpus Tak Seimbang Menggunakan NWKNN,†Konf. Nas. Sist. dan Inform. 2015, no. Oktober, hal. 222–227, 2015.
[14] B. M. Hsu, “Comparison of supervised classification models on textual data,†Mathematics, vol. 8, no. 5, 2020, doi: 10.3390/MATH8050851.
[15] U. Desi Arni, “Apa Itu Text Mining ?,†2021. https://garudacyber.co.id/artikel/1254-apa-itu-text-mining (diakses Mar 31, 2021).
[16] T. Wijaya, “Pengertian NLP dan Text Mining,†Algoritma, 2018. https://algorit.ma/blog/data-science/pengertian-text-mining-dan-nlp/ (diakses Mar 31, 2021).
[17] I. P. A. M. Utama, S. S. Prasetyowati, dan Y. Sibaroni, “Multi-Aspect Sentiment Analysis Hotel Review Using RF, SVM, and Naïve Bayes based Hybrid Classifier,†J. Media Inform. Budidarma, vol. 5, no. 2, hal. 630, 2021, doi: 10.30865/mib.v5i2.2959.
[18] A. Taufik, “Komparasi Algoritma Klasifikasi Text Mining Untuk Analisis Sentimen Pada Review Restoran,†J. Tek. Komput. AMIK BSI, vol. 4, no. 2, hal. 112–118, 2018, doi: 10.31294/jtk.v4i2.3461.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- M Safii, Husain Husain, Khairan Marzuki, Support Vector Machine Optimization for Diabetes Prediction Using Grid Search Integrated with SHapley Additive exPlanations , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Fitra Ahya Mubarok, Mohammad Reza Faisal, Dwi Kartini, Dodon Turianto Nugrahadi, Triando Hamonangan Saragih, Gender Classification of Twitter Users Using Convolutional Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Wahyu Styo Pratama, Didik Dwi Prasetya, Triyanna Widyaningtyas, Muhammad Zaki Wiryawan, Lalu Ganda Rady Putra, Tsukasa Hirashima, Performance Evaluation of Artificial Intelligence Models for Classification in Concept Map Quality Assessment , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Miftahuddin Fahmi, Anton Yudhana, Sunardi Sunardi, Image Processing Using Morphology on Support Vector Machine Classification Model for Waste Image , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Irma Binti Sya'idah, Sugiyarto Surono, Goh Khang Wen, DynamicWeighted Particle Swarm Optimization - Support Vector Machine Optimization in Recursive Feature Elimination Feature Selection , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Lusiana Efrizoni, Sarjon Defit, Muhammad Tajuddin, Anthony Anggrawan, Komparasi Ekstraksi Fitur dalam Klasifikasi Teks Multilabel Menggunakan Algoritma Machine Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Ahmad Zein Al Wafi, Febry Putra Rochim, Veda Bezaleel, Investigating Liver Disease Machine Learning Prediction Performancethrough Various Feature Selection Methods , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Fadhilah Dwi Ananda, Yoga Pristyanto, Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Wikky Fawwaz Al Maki, Amien Jafar Makrufi, Support vector machine with a firefly optimization algorithm for classification of apple fruit disease , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Pungkas Subarkah, Enggar Pri Pambudi, Septi Oktaviani Nur Hidayah, Perbandingan Metode Klasifikasi Data Mining untuk Nasabah Bank Telemarketing , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ni Wayan Sumartini Saraswati, Christina Purnama Yanti, I Dewa Made Krishna Muku, Dewa Ayu Putu Rasmika Dewi, Evaluation Analysis of the Necessity of Stemming and Lemmatization in Text Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Ni Wayan Sumartini Saraswati, Ni Wayan Wardani, Ketut Laksmi Maswari, I Dewa Made Krishna Muku, Rapid Application Development untuk Sistem Informasi Payroll berbasis Web , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Dewa Ayu Kadek Pramita, Ni Wayan Sumartini Saraswati, I Putu Dedy Sandana, Poria Pirozmand, I Kadek Agus Bisena, Optimizing Hotel Room Occupancy Prediction Using an Enhanced Linear Regression Algorithms , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 1 (2024)
- Ni Wayan Sumartini Saraswati, Ni Made Lisma Martarini, Extract Transform Loading Data Absensi STMIK STIKOM Indonesia Menggunakan Pentaho , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 19 No. 2 (2020)
- Ni Wayan Sumartini Saraswati, I Wayan Dharma Suryawan, Ni Komang Tri Juniartini, I Dewa Made Krishna Muku, Poria Pirozmand, Weizhi Song, Recognizing Pneumonia Infection in Chest X-Ray Using Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- I Gusti Ayu Agung Diatri Indradewi, Ni Wayan Sumartini Saraswati, Ni Wayan Wardani, COVID-19 Chest X-Ray Detection Performance Through Variations of Wavelets Basis Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Ni Wayan Sumartini Saraswati, I Wayan Agustya Saputra, Sistem Monitoring Tekanan Air pada PDAM Gianyar Berbasis Web , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
.png)











