Forecasting the Number of Students in Multiple Linear Regressions
DOI:
https://doi.org/10.30812/matrik.v21i2.1348Keywords:
Big data, Data Mining, Multiple linear regressions, ForecastingAbstract
The most important element of higher education was students, therefore every university must continue to improve services in the future, and one of them was by using decision support. This case could be done by utilizing the University of Big Data. Predicting the number of prospective students in higher education was done by utilizing data mining and multiple linear regression approaches. By using 2 independent variables, namely administration costs (X1), accreditation score (X2), and the number of students who was registered each year as dependent variable (Y). For the test data, it used database for the last 13 years. By using multiple linear regression, the intercept value was sought and the coefficient of determination until the regression coefficient was obtained with the equation Y = 45.28 + -0.02.X1 + 121.58.X2, noted that if X2 was constant, the increasing of one unit was in X1 would have the effect of increasing -0.02 units on Y. Secondly, if X1 was constant, the increasing of one unit was in X2, would have the effect of increasing 121.58 units in Y. Thirdly, if X1 and X2 were equal to zero, the magnitude of Y was 45.28 units. Therefore, the proposed approach could be provided the acceptable predictive results.
Downloads
References
[2] B. Furht and F. Villanustre, “Big data technologies and applications,†Big Data Technol. Appl., pp. 1–400, 2016.
[3] R. Dautov and S. Distefano, “Quantifying volume, velocity, and variety to support (Big) data-intensive application development,†Proc. - 2017 IEEE Int. Conf. Big Data, Big Data 2017, vol. 2018-January, pp. 2843–2852, 2017.
[4] I. A. T. Hashem et al., “The role of big data in smart city,†Int. J. Inf. Manage., vol. 36, no. 5, pp. 748–758, 2016.
[5] T. M. Song and J. Song, “Prediction of risk factors of cyberbullying-related words in Korea: Application of data mining using social big data,†Telemat. Informatics, vol. 58, p. 101524, 2021.
[6] T. GajdoÅ¡Ãk, “Big Data Analytics in Smart Tourism Destinations. A New Tool for Destination Management Organizations?,†pp. 15–33, 2019.
[7] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and analytics,†Int. J. Inf. Manage., vol. 35, no. 2, pp. 137–144, 2015.
[8] D. Wang, X. Robert, and Y. Li, “China’s ‘Smart Tourism Destination’ Initiative : A Taste Of the Service-Dominant Logic,†J. Destin. Mark. Manag., vol. 2, no. 2, pp. 59–61, 2013.
[9] A. Yang, Y. Han, C.-S. Liu, J.-H. Wu, and D.-B. Hua, “D-TSVR Recurrence Prediction Driven by Medical Big Data in Cancer,†IEEE Trans. Ind. Informatics, vol. 3203, no. c, pp. 1–1, 2020.
[10] A. Dridi, M. M. Gaber, R. M. A. Azad, and J. Bhogal, “Scholarly data mining: A systematic review of its applications,†Wiley Interdiscip. Rev. Data Min. Knowl. Discov., no. October, pp. 1–23, 2020.
[11] Y. Ge and H. Wu, “Prediction of corn price fluctuation based on multiple linear regression analysis model under big data,†Neural Comput. Appl., vol. 32, no. 22, pp. 16843–16855, 2020.
[12] J. Hong, Z. Wang, W. Chen, L. Y. Wang, and C. Qu, “Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles,†J. Energy Storage, vol. 30, no. February, p. 101459, 2020.
[13] K. L. L. Khine and T. T. S. Nyunt, Predictive big data analytics using multiple linear regression model, vol. 744. Springer Singapore, 2019.
[14] X. Xu, Z. Sun, L. Wang, J. Fu, and C. Wang, “A Comparative Study of Customer Complaint Prediction Model of Time Series, Multiple Linear Regression and BP Neural Network,†J. Phys. Conf. Ser., vol. 1187, no. 5, 2019.
[15] F. Wang, Z. Shi, A. Biswas, S. Yang, and J. Ding, “Multi-algorithm comparison for predicting soil salinity,†Geoderma, vol. 365, no. February 2019, p. 114211, 2020.
[16] H. Rawashdeh et al., “Intelligent system based on data mining techniques for prediction of preterm birth for women with cervical cerclage,†Comput. Biol. Chem., vol. 85, no. February, p. 107233, 2020.
[17] Y. S. Lee, J. R. Wang, J. W. Zhan, and J. M. Zhang, “Data Mining Analysis of Overall Team Information Based on Internet of Things,†IEEE Access, vol. 8, pp. 41822–41829, 2020.
[18] C. N. Burger, T. L. Grobler, and W. Kleynhans, “Discrete Kalman Filter and Linear Regression Comparison for Vessel Coordinate Prediction,†Proc. - IEEE Int. Conf. Mob. Data Manag., vol. 2020-June, no. Mdm, pp. 269–274, 2020.
[19] Y. S. Kong, S. Abdullah, D. Schramm, M. Z. Omar, and S. M. Haris, “Development of multiple linear regression-based models for fatigue life evaluation of automotive coil springs,†Mech. Syst. Signal Process., vol. 118, pp. 675–695, 2019.
[20] Bochumer Institut für Technologie GmbH, Data Science - Data Science, no. September 2016. 2018.
[21] Liu, C., Jin, R., Gong, E., Liu, Y., Yue, M., “Prediction for the Performance of Gas Turbine Units Using Multiple Linear Regression,â€Proc.- Of the Chinese Society of Electrical Engineering., vol. 37, pp. 4731-4738, Aug 2017.
[22] X. Li, H. Dong, and S. Han, “Multiple Linear Regression with Kalman Filter for Predicting End Prices of Online Auctions,†2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Aug. 2020.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Meidyan Permata Putri, Bobby Bobby, Sistem Informasi Manajemen Proyek PT. Samudera Perkasa Konstruksi Berbasis Web , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 1 (2020)
- Fitra Ahya Mubarok, Mohammad Reza Faisal, Dwi Kartini, Dodon Turianto Nugrahadi, Triando Hamonangan Saragih, Gender Classification of Twitter Users Using Convolutional Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Abd Mizwar A Rahim, Andi Sunyoto, Muhammad Rudyanto Arief, Stroke Prediction Using Machine Learning Method with Extreme Gradient Boosting Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Erwin Mardinat, Saiful Khair, MEMBANGUN SISTEM INFORMASI PENGELOLAHAN DATA NASABAH BERBASIS WEB DI BANK SAMPAH SAMAWA , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 17 No. 1 (2017)
- Erlin Erlin, Yenny Desnelita, Nurliana Nasution, Laili Suryati, Fransiskus Zoromi, Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Arief Hermawan, Adityo Permana Wibowo, Akmal Setiawan Wijaya, The Improvement of Artificial Neural Network Accuracy Using Principle Component Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Deny Jollyta, Prihandoko Prihandoko, Dadang Priyanto, Alyauma Hajjah, Yulvia Nora Marlim, Comparison of Distance Measurements Based on k-Numbers and Its Influence to Clustering , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Ni Wayan Sumartini Saraswati, I Wayan Agustya Saputra, Sistem Monitoring Tekanan Air pada PDAM Gianyar Berbasis Web , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- Akmal Setiawan Wijaya, Dhomas Hatta Fudholi, Ahmad R. Pratama, A computational approach in analyzing the empathy to online donations during COVID-19 , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Paska Marto Hasugian, Devy Mathelinea, Siska Simamora, Pandi Barita Nauli Simangunsong, Comparative Evaluation of Data Clustering Accuracy through Integration of Dimensionality Reduction and Distance Metric , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Hengki Tamando Sihotang, Fristi Riandari, Pilisman Buulolo, Husain Husain, Sistem Pakar untuk Identifikasi Kandungan Formalin dan Boraks pada Makanan dengan Menggunakan Metode Certainty Factor , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Desi Vinsensia, Siskawati Amri, Jonhariono Sihotang, Hengki Tamando Sihotang, New Method for Identification and Response to Infectious Disease Patterns Based on Comprehensive Health Service Data , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Husain Husain, I Putu Hariyadi, Kurniadin Abd Latif, Galih Tri Aditya, Implementation of Port Knocking with Telegram Notifications to Protect Against Scanner Vulnerabilities , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Husain Husain, Pulung Nurtantio Andono, M. Arif Soeleman, Perspektif Baru Enterprise Architecture Pemerintahan Kota Mataram Berbasis TOGAF ADM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 16 No. 2 (2017)
- Susandri susandri, Sarjon Defit, Fristi Riandari, Bosker Sinaga, Ekplorasi Timeline : Waktu Respon Pesan Terbaik WhatSapp Group “Gurauan kita STMIK Amik†, MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- M Safii, Husain Husain, Khairan Marzuki, Support Vector Machine Optimization for Diabetes Prediction Using Grid Search Integrated with SHapley Additive exPlanations , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
- Bambang Saras Yulistiawan, Rifka Widyastuti , RR Octanty Mulianingtyas , Galih Prakoso Rizky A, Hengki Tamando Sihotang, Developing the Adaptive Digital IT Governance Framework for Next-Generation IT Governance , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 25 No. 1 (2025)
.png)











