Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine
DOI:
https://doi.org/10.30812/matrik.v20i2.1130Keywords:
Sentiment Analysis, Support Vector Machine, Classification, Internet Provider, Twitter DataAbstract
Media sosial saat ini merupakan media komunikasi yang sering digunakan oleh kalangan masyarakat Indonesia dalam menyampaikan sebuah opini. Salah satu media yang sering digunakan masyarat adalah twitter. Twitter merupakan media sosial yang memberikan banyak informasi melalui tweet, dari informasi yang ditulis tersebut terdapat data yang dapat diolah. Penelitian ini menggunakan teknik text mining dengan menerapkan algoritma Support Vector Machine dipergunakan untuk klasifikasi sentimen pengguna twitter terhadap layanan internet Biznet. Kernel yang digunakan adalah kernel Linear dan kernel RBF. Pengujian dilakukan dengan 3 skenario, pada skenario 1 menggunakan 800 data, skenario 2 menggunakan 900 data dan skenario 3 menggunakan 1000 data, untuk pembagiannya yaitu 90% data training dan 10% data testing dari masing-masing skenario. Berdasarkan hasil pengujian yang dilakukan menggunakan kernel linear dan kernel RBF dapat diambil kesimpulan sebagai berikut. Algoritma SVM menggunakan dengan kernel linear maupun kernel RBF memiliki hasil kinerja evaluasi baik dari sisi akurasi, presisi dan recall yang relatif sama. Sehingga dapat dikatakan bahwa algoritma SVM baik dengan kernel RBF maupun Linear sama sama dapat digunakan dengan baik dalam menentukan sentimen pengguna internet Biznet. Selain itu dengan 3 skenario pengujian dengan jumlah data yang berbeda algoritma SVM baik dengan kernel RBF maupun Linear sama sama konsisten kinerjanya.
Downloads
References
[2] A. Balahur, R. Mihalcea, and A. Montoyo, “Computational approaches to subjectivity and sentiment analysis: Present and envisaged methods and applications,†Computer Speech and Language, vol. 28, no. 1, pp. 1–6, 2014.
[3] kominfo, “Indonesia Peringkat Lima Pengguna Twitter,†https://kominfo.go.id/, 2012. .
[4] P. R. Shaver, U. Murdaya, and R. C. Fraley, “Structure of the Indonesian emotion lexicon,†Asian Journal of Social Psychology, vol. 4, no. 3, pp. 201–224, 2001.
[5] R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),†Jurnal Media Informatika Budidarma, vol. 4, no. 3, p. 650, 2020.
[6] C. . Manning, P. Raghavan, and H. Schutze, “Introduction to Information Retrieval,†Cambridge University Press, 2008.
[7] I. Rozi, S. Pramono, and E. Dahlan, “Implementasi Opinion Mining (Analisis Sentimen) Untuk Ekstraksi Data Opini Publik Pada Perguruan Tinggi,†Jurnal EECCIS, vol. 6, no. 1, pp. 37–43, 2012.
[8] B. Liu, entiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge: Cambridge University Press, 2015.
[9] A. Fathan Hidayatullah, M. Rifqi Ma, and arif Program Studi Manajemen Informatika STMIK Jenderal Achmad Yani Yogyakarta Jl Ringroad Barat, “Penerapan Text Mining dalam Klasifikasi Judul Skripsi,†Seminar Nasional Aplikasi Teknologi Informasi (SNATi) Agustus, pp. 1907–5022, 2016.
[10] H. Yu, X. Huang, X. Hu, and H. Cai, “A comparative study on data mining algorithms for individual credit risk evaluation,†Proceedings - 2010 International Conference on Management of e-Commerce and e-Government, ICMeCG 2010, pp. 35–38, 2010.
[11] B. Pang and L. Lee, “Thumb Up ? Sentiment Classification Using Machine Learning Techiques,†Prociding of the Conference on Empirical Method in Natural Language Processing Empirical Method in Natural Language Processing, pp. 79–86, 2002.
[12] E. Tyagi and A. K. Sharma, “Sentiment Analysis of Product Reviews using Support Vector Machine Learning Algorithm,†Indian Journal of Science and Technology, vol. 10, no. 35, pp. 1–9, 2017.
[13] P. H. Saputro, M. Aristin, and Dy. L. Tyas, “Klasifikasi Lagu Daerah Indonesia Berdasarkan Lirik Menggunakan Metode Tf- Idf Dan Naïve Bayes,†Jurnal Teknoloi Informatika dan Terapan, vol. 4, no. 1, pp. 45–50, 2017.
[14] K. A. B. Permana, M. Sudarma, and W. G. Ariastina, “Analisis Rating Sentimen pada Video di Media Sosial Youtube Menggunakan STRUCT-SVM,†Majalah Ilmiah Teknologi Elektro, vol. 18, no. 1, p. 113, 2019.
[15] N. A. Vidya, M. I. Fanany, and I. Budi, “Twitter Sentiment to Analyze Net Brand Reputation of Mobile Phone Providers,†Procedia Computer Science, vol. 72, pp. 519–526, 2015.
[16] A. D. Hartanto, A. Syaputra, and Y. Pristyanto, “Best parameter selection of rabin-Karp algorithm in detecting document similarity,†2019.
[17] C.-W. Hsu, C. Chih-Chung, and C.-J. Lin, “A Practical Guide to Support Vector Classification,†BJU international, vol. 101, no. 1, pp. 1396–400, 2008.
[18] B. Max, Principles of Data Mining. London: Springer, 2007.
[19] R. Feldman and J. Sanger, The Text Mining Handbook. 2007.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Dimas Afryzal Hanan, Ario Yudo Husodo, Regania Pasca Rassy, Sentiment Study of ChatGPT on Twitter Data with Hybrid K-Means and LSTM , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Rizky Afrinanda, Lusiana Efrizoni, Wirta Agustin, Rahmiati Rahmiati, Hybrid Model for Sentiment Analysis of Bitcoin Prices using Deep Learning Algorithm , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Wikky Fawwaz Al Maki, Amien Jafar Makrufi, Support vector machine with a firefly optimization algorithm for classification of apple fruit disease , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Mamluatul Hani'ah, Moch Zawaruddin Abdullah, Wilda Imama Sabilla, Syafaat Akbar, Dikky Rahmad Shafara, Google Trends and Technical Indicator based Machine Learning for Stock Market Prediction , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- I Gusti Ayu Agung Diatri Indradewi, Ni Wayan Sumartini Saraswati, Ni Wayan Wardani, COVID-19 Chest X-Ray Detection Performance Through Variations of Wavelets Basis Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Achmad Lukman, Wahju Tjahjo Saputro, Erni Seniwati, Improving Performance Convolutional Neural Networks Using Modified Pooling Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Budi Sumanto, Denting Romantika Java, Wahyu Wijaya, Jans Hendry, Seleksi Fitur Terhadap Performa Kinerja Sistem E-Nose untuk Klasifikasi Aroma Kopi Gayo , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 2 (2022)
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Denny Indrajaya, Adi Setiawan, Bambang Susanto, Comparison of k-Nearest Neighbor and Naive Bayes Methods for SNP Data Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Arief Hermawan, Adityo Permana Wibowo, Akmal Setiawan Wijaya, The Improvement of Artificial Neural Network Accuracy Using Principle Component Analysis Approach , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Cherfly Kaope, Yoga Pristyanto, The Effect of Class Imbalance Handling on Datasets Toward Classification Algorithm Performance , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Rizky Hafizh Jatmiko, Yoga Pristyanto, Investigating The Effectiveness of Various Convolutional Neural Network Model Architectures for Skin Cancer Melanoma Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
.png)











