Identify the Condition of Corn Plants Using Gray Level Co-occurrence Matrix and Bacpropagation
DOI:
https://doi.org/10.30812/matrik.v24i2.4035Keywords:
Corn Plant Diseases., Machine Learning, Artificial Neural Networks., Backpropagation, Gray Level Co-occurrence MatrixAbstract
This research aims to increase the accuracy of identifying the condition of corn plants based on leaf features using the GLCM and ANN Backpropagation methods. The GLCM method is used to extract features from corn leaf images, while Backpropagation ANN is used to classify the condition of corn plants based on these features. This classification was carried out using a dataset of corn leaves from four different conditions, namely healthy, leaf-spot, leaf-blight, and leaf-rust. Next, leaf features are extracted using the GLCM method. After that, data normalization was carried out, balancing the dataset, and training was carried out on the Backpropagation ANN model to classify the condition of the corn plants. After training the model, the next model evaluation is carried out using the confusion matrix method. The research results show that the method used can produce quite high accuracy when identifying the condition of corn plants, with an accuracy of 99%. This shows that the use of GLCM and ANN Backpropagation can be a good alternative in identifying the condition of corn plants. This research provides benefits in making it easier to accurately identify the condition of corn plants.
Downloads
References
[2] pertanian, “budidaya jagung.†[online]. Available: https://pertanian.ngawikab.go.id/2022/08/08/budidaya-jagung/
[3] m. A. Suparlan, nurali, edi wati, “pengendalian terpadu hama utama tanaman jagung (zea mays, l) di lahan kering.†[online]. Available: http://cybex.pertanian.go.id/mobile/artikel/100282/pengendalian-terpadu-hama-utama-tanaman-jagung-zea-mays-l-di-lahan-kering/
[4] tajuddin bantacut, muammar tawaruddin akbar, and yasser redin firdaus, “pengembangan jagung untuk ketahanan pangan, industri dan ekonomi,†2015.
[5] koesrini, “teknologi budidaya jagung di lahan rawa.†2016. [online]. Available: http://balittra.litbang.pertanian.go.id/index.php?option=com_content&view=article&id=1823&itemid=10
[6] f. Afandi, “penyakit jagung dan cara mengatasinya.†[online]. Available: http://cybex.pertanian.go.id/mobile/artikel/74692/penyakit-jagung-dan-cara-mengatasinya/
[7] k. Pertanian, “analisis kinerja perdagangan jagung,†pusat data dan sistem informasi pertanian sekretariat jenderal kementerian pertanian 2021, pp. 5–24, 2021.
[8] p. Semitera, “abstrak seminar nasional teknologi terapan (semitera) 2021,†seminar teknologi terapan, 2021, [online]. Available: https://prosiding.polindra.ac.id/index.php/semitera/article/download/64/1
[9] k. Saputra s and m. I. Perangin-angin, “klasifikasi tanaman obat berdasarkan ekstraksi fitur morfologi daun menggunakan jaringan syaraf tiruan,†jurnal informatika, vol. 5, no. 2, pp. 169–174, 2018, doi: 10.31311/ji.v5i2.3770.
[10] d. Iswantoro and d. Handayani un, “klasifikasi penyakit tanaman jagung menggunakan metode convolutional neural network (cnn),†jurnal ilmiah universitas batanghari jambi, vol. 22, no. 2, p. 900, 2022, doi: 10.33087/jiubj.v22i2.2065.
[11] m. Sibiya and m. Sumbwanyambe, “automatic fuzzy logic-based maize common rust disease severity predictions with thresholding and deep learning,†pathogens, vol. 10, no. 2, pp. 1–17, 2021, doi: 10.3390/pathogens10020131.
[12] a. K. S. & s. C. M. Kshyanaprava panda panigrahi, himansu das, “maize leaf disease detection and classification using machine learning algorithms,†progress in computing, analytics and networking, vol. Volume 111, 2020, [online]. Available: https://link.springer.com/chapter/10.1007/978-981-15-2414-1_66
[13] i. Pratama putra and d. Alamsyah, “klasifikasi penyakit daun jagung menggunakan metode convolutional neural network,†jurnal algoritme, vol. 2, no. 2, pp. 102–112, 2022, [online]. Available: https://www.kaggle.com/qramkrishna/corn-leaf-infection-dataset
[14] q. N. Azizah, “klasifikasi penyakit daun jagung menggunakan metode convolutional neural network alexnet,†sudo jurnal teknik informatika, vol. 2, no. 1, pp. 28–33, feb. 2023, doi: 10.56211/sudo.v2i1.227.
[15] a. Neardiaty, “klasifikasi hama dan penyakit tanaman jagung menggunakan metode fuzzy random forest berdasarkan resampling repeated k-fold cross validation,†2022, [online]. Available: https://repository.unsri.ac.id/76903/
[16] ainani shabrina febrianti, tri arief sardjono, and atar fuady babgei, “klasifikasi tumor otak pada citra magnetic resonance image dengan menggunakan metode support vector machine,†jurnal teknik its, 2020.
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Achmad Lukman, Wahju Tjahjo Saputro, Erni Seniwati, Improving Performance Convolutional Neural Networks Using Modified Pooling Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
- Firda Yunita Sari, Maharani sukma Kuntari, Hani Khaulasari, Winda Ari Yati, Comparison of Support Vector Machine Performance with Oversampling and Outlier Handling in Diabetic Disease Detection Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 3 (2023)
- Pardomuan Robinson Sihombing, Istiqomatul Fajriyah Yuliati, Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 20 No. 2 (2021)
- Mamluatul Hani'ah, Moch Zawaruddin Abdullah, Wilda Imama Sabilla, Syafaat Akbar, Dikky Rahmad Shafara, Google Trends and Technical Indicator based Machine Learning for Stock Market Prediction , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 2 (2023)
- Bambang Krismono Triwijoyo, Model Fast Tansfer Learning pada Jaringan Syaraf Tiruan Konvolusional untuk Klasifikasi Gender Berdasarkan Citra Wajah , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 18 No. 2 (2019)
- B. Herawan Hayadi, I Gede Iwan Sudipa, Agus Perdana Windarto, Model Peramalan Artificial Neural Network pada Peserta KB Aktif Jalur Pemerintahan menggunakan Artificial Neural Network Back-Propagation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 1 (2021)
- Muhammad Furqan Nazuli, Muhammad Fachrurrozi, Muhammad Qurhanul Rizqie, Abdiansah Abdiansah, Muhammad Ikhsan, A Image Classification of Poisonous Plants Using the MobileNetV2 Convolutional Neural Network Model Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Aris Tjahyanto, Faisal Johan Atletiko, Peningkatan Kinerja Pengklasifikasi Objek Bawah Laut dengan Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 21 No. 3 (2022)
- Muhammad Yunus, PENERAPAN FUZZY EXPERT SYSTEM UNTUK DIAGNOSA PENYAKIT TELINGA, HIDUNG DAN TENGGOROKAN (THT) , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 15 No. 1 (2015)
- Nurun Latifah, Ramaditia Dwiyansaputra, Gibran Satya Nugraha, Multiclass Text Classification of Indonesian Short Message Service (SMS) Spam using Deep Learning Method and Easy Data Augmentation , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
You may also start an advanced similarity search for this article.