Comparison of DenseNet-121 and MobileNet for Coral Reef Classification
DOI:
https://doi.org/10.30812/matrik.v23i2.3683Keywords:
Coral Reefs, Convolutional Neural Network, Confusion Matrix, DenseNet-121, MobileNetAbstract
Coral reefs are a type of marine organism that has beauty and benefits for other sea creatures’ ecosystems. However, despite its beauty and usefulness, coral reefs are vulnerable to damage such as coral bleaching, which can impact other coral reef ecosystems. This research aims to classify digital images of healthy, bleached, and dead coral reefs. This research method is DenseNet-121 and MobileNet is based on Convolutional Neural Networks. This research uses a dataset from 1582 coral reef image data with three main classes: 720 were bleached, 150 were dead, and 712 were healthy. The testing process is carried out using several forms of split datasets, namely 60:10:30, 50:10:40, and 70:10:20. The test results obtained with a data sharing percentage of 60:10:30 show that MobileNet architecture achieved 88.00% accuracy, and DenseNet-121 achieved 91.57% accuracy. Using a data split percentage of 50:10:40, MobileNet achieved 84.51% accuracy, and DenseNet- 121 achieved 90.52% accuracy. Meanwhile, with a data separation percentage of 70:10:20, MobileNet achieved 85.48% accuracy, and DenseNet-121 achieved 92.74% accuracy.
Downloads
References
C. Corts-Useche, V. Galvn, M. A. Garca Salgado, M. Gnecco, S. D. Guendulain-Garca, E. A. Hernndez Delgado, J. A.
Marn Moraga, M. F. Maya, S. Mendoza Quiroz, S. Mercado Cervantes, M. Morikawa, G. Nava, V. Pizarro, R. I.
Sellares-Blasco, S. E. Suleimn Ramos, T. Villalobos Cubero, M. F. Villalpando, and S. Fras-Torres, “Coral reef restoration
efforts in Latin American countries and territories,†PLOS ONE, vol. 15, no. 8, p. e0228477, Aug. 2020. [Online]. Available:
https://dx.plos.org/10.1371/journal.pone.0228477
[2] T. P. Hughes, J. T. Kerry, A. H. Baird, S. R. Connolly, T. J. Chase, A. Dietzel, T. Hill, A. S. Hoey, M. O. Hoogenboom,
M. Jacobson, A. Kerswell, J. S. Madin, A. Mieog, A. S. Paley, M. S. Pratchett, G. Torda, and R. M. Woods,
“Global warming impairs stockrecruitment dynamics of corals,†Nature, vol. 568, no. 7752, pp. 387–390, Apr. 2019,
https://doi.org/10.1038/s41586-019-1081-y. [Online]. Available: https://www.nature.com/articles/s41586-019-1081-y
[3] L. B. DeFilippo, L. C. McManus, D. E. Schindler, M. L. Pinsky, M. A. Colton, H. E. Fox, E. W. Tekwa, S. R.
Palumbi, T. E. Essington, and M. M. Webster, “Assessing the potential for demographic restoration and assisted evolution
to build climate resilience in coral reefs,†Ecological Applications, vol. 32, no. 7, p. e2650, Oct. 2022. [Online]. Available:
https://esajournals.onlinelibrary.wiley.com/doi/10.1002/eap.2650
[4] M. Slattery, M. S. Pankey, and M. P. Lesser, “Annual Thermal Stress Increases a Soft Corals Susceptibility to Bleaching,â€
Scientific Reports, vol. 9, no. 1, p. 8064, May 2019, https://doi.org/10.1038/s41598-019-44566-9. [Online]. Available:
https://www.nature.com/articles/s41598-019-44566-9
[5] T. A. Courtney, B. B. Barnes, I. Chollett, R. Elahi, K. Gross, J. R. Guest, I. B. Kuffner, E. A. Lenz, H. R. Nelson,
C. S. Rogers, L. T. Toth, and A. J. Andersson, “Disturbances drive changes in coral community assemblages and coral
calcification capacity,†Ecosphere, vol. 11, no. 4, p. e03066, Apr. 2020, https://doi.org/10.1002/ecs2.3066. [Online]. Available:
https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecs2.3066
[6] A. Raphael, Z. Dubinsky, D. Iluz, and N. S. Netanyahu, “Neural Network Recognition of Marine Benthos
and Corals,†Diversity, vol. 12, no. 1, p. 29, Jan. 2020, https://doi.org/10.3390/d12010029. [Online]. Available:
https://www.mdpi.com/1424-2818/12/1/29
[7] M. Asha Paul, P. Arockia Jansi Rani, and J. Liba Manopriya, “Gradient Based Aura Feature Extraction for
Coral Reef Classification,†Wireless Personal Communications, vol. 114, no. 1, pp. 149–166, Sep. 2020, https:
//doi.org/10.1007/s11277-020-07355-6. [Online]. Available: https://link.springer.com/10.1007/s11277-020-07355-6
[8] L. Von Chamier, R. F. Laine, J. Jukkala, C. Spahn, D. Krentzel, E. Nehme, M. Lerche, S. Hernndez-Prez, P. K. Mattila,
E. Karinou, S. Holden, A. C. Solak, A. Krull, T.-O. Buchholz, M. L. Jones, L. A. Royer, C. Leterrier, Y. Shechtman, F. Jug,
M. Heilemann, G. Jacquemet, and R. Henriques, “Democratising deep learning for microscopy with ZeroCostDL4Mic,â€
Nature Communications, vol. 12, no. 1, p. 2276, Apr. 2021, https://doi.org/10.1038/s41467-021-22518-0. [Online]. Available:
https://www.nature.com/articles/s41467-021-22518-0
[9] P. Wang, E. Fan, and P. Wang, “Comparative analysis of image classification algorithms based on traditional machine learning
and deep learning,†Pattern Recognition Letters, vol. 141, pp. 61–67, Jan. 2021, https://doi.org/10.1016/j.patrec.2020.07.042.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0167865520302981
[10] Agus Perdana Windarto, Anjar Wanto, S Solikhun, and Ronal Watrianthos, “A Comprehensive Bibliometric Analysis of Deep
Learning Techniques for Breast Cancer Segmentation: Trends and Topic Exploration (2019-2023),†Jurnal RESTI (Rekayasa
Sistem dan Teknologi Informasi), vol. 7, no. 5, pp. 1155–1164, Oct. 2023, https://doi.org/10.29207/resti.v7i5.5274. [Online].
Available: http://jurnal.iaii.or.id/index.php/RESTI/article/view/5274
[11] J. Hu, X. Deng, Y. Pan, Y. Wang, and W. Jin, “Temporal Encoded Deep Learning Radiomics Model for
Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma,†Journal of Medical and Biological
Engineering, vol. 43, no. 5, pp. 623–632, Oct. 2023, https://doi.org/10.1007/s40846-023-00829-5. [Online]. Available:
https://link.springer.com/10.1007/s40846-023-00829-5
[12] K. H. Manguri, R. N. Ramadhan, and P. R. Mohammed Amin, “Twitter Sentiment Analysis on Worldwide COVID-19
Outbreaks,†Kurdistan Journal of Applied Research, pp. 54–65, May 2020, https://doi.org/10.24017/covid.8. [Online].
Available: https://www.spu.edu.iq/kjar/index.php/kjar/article/view/512
[13] P. H. Kim, H. M. Yoon, J. R. Kim, J.-Y. Hwang, J.-H. Choi, J. Hwang, J. Lee, J. Sung, K.-H. Jung, B. Bae, A. Y. Jung,
Y. A. Cho, W. H. Shim, B. Bak, and J. S. Lee, “Bone Age Assessment Using Artificial Intelligence in Korean Pediatric
Population: A Comparison of Deep-Learning Models Trained With Healthy Chronological and Greulich-Pyle Ages as Labels,â€
Korean Journal of Radiology, vol. 24, no. 11, p. 1151, 2023, https://doi.org/10.3348/kjr.2023.0092. [Online]. Available:
https://kjronline.org/DOIx.php?id=10.3348/kjr.2023.0092
[14] A. Esteva, K. Chou, S. Yeung, N. Naik, A. Madani, A. Mottaghi, Y. Liu, E. Topol, J. Dean, and R. Socher,
“Deep learning-enabled medical computer vision,†npj Digital Medicine, vol. 4, no. 1, p. 5, Jan. 2021, https:
//doi.org/10.1038/s41746-020-00376-2. [Online]. Available: https://www.nature.com/articles/s41746-020-00376-2
[15] D. R. Sarvamangala and R. V. Kulkarni, “Convolutional neural networks in medical image understanding: a survey,â€
Evolutionary Intelligence, vol. 15, no. 1, pp. 1–22, Mar. 2022, https://doi.org/10.1007/s12065-020-00540-3. [Online].
Available: https://link.springer.com/10.1007/s12065-020-00540-3
[16] M. B. Bora, D. Daimary, K. Amitab, and D. Kandar, “Handwritten Character Recognition from Images using CNN-ECOC,â€
Procedia Computer Science, vol. 167, pp. 2403–2409, 2020, https://doi.org/10.1016/j.procs.2020.03.293. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1877050920307596
[17] A. inar and M. Yildirim, “Detection of tumors on brain MRI images using the hybrid convolutional neural network
architecture,†Medical Hypotheses, vol. 139, p. 109684, Jun. 2020, https://doi.org/10.1016/j.mehy.2020.109684. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S0306987720301717
[18] J. Chen, D. Zhang, M. Suzauddola, Y. A. Nanehkaran, and Y. Sun, “Identification of plant disease images via a
squeezeandexcitation MobileNet model and twice transfer learning,†IET Image Processing, vol. 15, no. 5, pp. 1115–1127,
Apr. 2021, https://doi.org/10.1049/ipr2.12090. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1049/ipr2.12090
[19] Y.-D. Zhang, S. C. Satapathy, X. Zhang, and S.-H. Wang, “COVID-19 Diagnosis via DenseNet and Optimization of Transfer
Learning Setting,†Cognitive Computation, Jan. 2021, https://doi.org/10.1007/s12559-020-09776-8. [Online]. Available:
http://link.springer.com/10.1007/s12559-020-09776-8
[20] S. Das, O. F. M. R. R. Aranya, and N. N. Labiba, “Brain Tumor Classification Using Convolutional Neural Network,â€
in 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT).
Dhaka, Bangladesh: IEEE, May 2019, pp. 1–5, https://doi.org/10.1109/ICASERT.2019.8934603. [Online]. Available:
https://ieeexplore.ieee.org/document/8934603/
[21] A. A. Barbhuiya, R. K. Karsh, and R. Jain, “CNN based feature extraction and classification for sign language,†Multimedia
Tools and Applications, vol. 80, no. 2, pp. 3051–3069, Jan. 2021, https://doi.org/10.1007/s11042-020-09829-y. [Online].
Available: https://link.springer.com/10.1007/s11042-020-09829-y
[22] T. N. T. Arsad, E. A. Awalludin, Z. Bachok,W. N. J. H.W. Yussof, and M. S. Hitam, “A review of coral reef classification study
using deep learning approach,†Kuala Terengganu, Malaysia, 2023, p. 050005, https://doi.org/10.1063/5.0110245. [Online].
Available: https://pubs.aip.org/aip/acp/article/2879531
[23] D. Schrholz and A. Chennu, “Digitizing the coral reef: Machine learning of underwater spectral images enables
dense taxonomic mapping of benthic habitats,†Methods in Ecology and Evolution, vol. 14, no. 2, pp. 596–613, Feb.
2023, https://doi.org/10.1111/2041-210X.14029. [Online]. Available: https://besjournals.onlinelibrary.wiley.com/doi/10.1111/
2041-210X.14029
[24] M. D. M. Manessa, M. A. F. Ummam, A. F. Efriana, J. M. Semedi, and F. Ayu, “Assessing Derawan Islands Coral
Reefs over Two Decades: A Machine Learning Classification Perspective,†Sensors, vol. 24, no. 2, p. 466, Jan. 2024,
https://doi.org/10.3390/s24020466. [Online]. Available: https://www.mdpi.com/1424-8220/24/2/466
[25] S. Sakib, N. Ahmed, A. J. Kabir, and H. Ahmed, “An Overview of Convolutional Neural Network: Its Architecture and
Applications,†MATHEMATICS & COMPUTER SCIENCE, preprint, Nov. 2018, https://doi.org/10.20944/preprints201811.
0546.v1. [Online]. Available: http://www.preprints.org/manuscript/201811.0546/v1
[26] H. Gholamalinezhad and H. Khosravi, “Pooling Methods in Deep Neural Networks, a Review,†2020, https:
//doi.org/10.48550/ARXIV.2009.07485. [Online]. Available: https://arxiv.org/abs/2009.07485
[27] X. Y. Wu, “A hand gesture recognition algorithm based on DC-CNN,†Multimedia Tools and Applications,
vol. 79, no. 13-14, pp. 9193–9205, Apr. 2020, https://doi.org/10.1007/s11042-019-7193-4. [Online]. Available:
http://link.springer.com/10.1007/s11042-019-7193-4
[28] S. M. Hassan, A. K. Maji, M. Jasiski, Z. Leonowicz, and E. Jasiska, “Identification of Plant-Leaf Diseases Using CNN and
Transfer-Learning Approach,†Electronics, vol. 10, no. 12, p. 1388, Jun. 2021, https://doi.org/10.3390/electronics10121388.
[Online]. Available: https://www.mdpi.com/2079-9292/10/12/1388
[29] K. Thenmozhi and U. Srinivasulu Reddy, “Crop pest classification based on deep convolutional neural network and transfer
learning,†Computers and Electronics in Agriculture, vol. 164, p. 104906, Sep. 2019, https://doi.org/10.1016/j.compag.2019.
104906. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0168169919310695
[30] T. Rahman, M. E. H. Chowdhury, A. Khandakar, K. R. Islam, K. F. Islam, Z. B. Mahbub, M. A. Kadir, and
S. Kashem, “Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection Using Chest
X-ray,†Applied Sciences, vol. 10, no. 9, p. 3233, May 2020, https://doi.org/10.3390/app10093233. [Online]. Available:
https://www.mdpi.com/2076-3417/10/9/3233
[31] N. Aneja and S. Aneja, “Transfer Learning using CNN for Handwritten Devanagari Character Recognition,†in 2019 1st
International Conference on Advances in Information Technology (ICAIT). Chikmagalur, India: IEEE, Jul. 2019, pp. 293–296,
https://doi.org/10.1109/ICAIT47043.2019.8987286. [Online]. Available: https://ieeexplore.ieee.org/document/8987286/
[32] A. Susanto, C. A. Sari, E. H. Rachmawanto, I. U. W. Mulyono, and N. M. Yaacob, “A Comparative Study
of Javanese Script Classification with GoogleNet, DenseNet, ResNet, VGG16 and VGG19,†Scientific Journal
of Informatics, vol. 11, no. 1, pp. 31–40, Jan. 2024, https://doi.org/10.15294/sji.v11i1.47305. [Online]. Available:
https://journal.unnes.ac.id/nju/sji/article/view/47305
[33] K. M. Hosny, M. A. Kassem, and M. M. Foaud, “Classification of skin lesions using transfer learning and augmentation
with Alex-net,†PLOS ONE, vol. 14, no. 5, p. e0217293, May 2019, https://doi.org/10.1371/journal.pone.0217293. [Online].
Available: https://dx.plos.org/10.1371/journal.pone.0217293
[34] P. Chlap, H. Min, N. Vandenberg, J. Dowling, L. Holloway, and A. Haworth, “A review of medical image
data augmentation techniques for deep learning applications,†Journal of Medical Imaging and Radiation Oncology,
vol. 65, no. 5, pp. 545–563, Aug. 2021, https://doi.org/10.1111/1754-9485.13261. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/10.1111/1754-9485.13261
Downloads
Published
Issue
Section
How to Cite
Similar Articles
- Rizky Hafizh Jatmiko, Yoga Pristyanto, Investigating The Effectiveness of Various Convolutional Neural Network Model Architectures for Skin Cancer Melanoma Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- sayuti rahman, Marwan Ramli, Arnes Sembiring, Muhammad Zen, Rahmad B.Y Syah, Normalization Layer Enhancement in Convolutional Neural Network for Parking Space Classification , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Melinda Melinda, Zharifah Muthiah, Fitri Arnia, Elizar Elizar, Muhammad Irhmasyah, Image Data Acquisition and Classification of Vannamei Shrimp Cultivation Results Based on Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 3 (2024)
- Ni Wayan Sumartini Saraswati, I Wayan Dharma Suryawan, Ni Komang Tri Juniartini, I Dewa Made Krishna Muku, Poria Pirozmand, Weizhi Song, Recognizing Pneumonia Infection in Chest X-Ray Using Deep Learning , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Miftahus Sholihin, Mohd Farhan Bin Md. Fudzee, Lilik Anifah, A Novel CNN-Based Approach for Classification of Tomato PlantDiseases , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 3 (2025)
- Muhammad Furqan Nazuli, Muhammad Fachrurrozi, Muhammad Qurhanul Rizqie, Abdiansah Abdiansah, Muhammad Ikhsan, A Image Classification of Poisonous Plants Using the MobileNetV2 Convolutional Neural Network Model Method , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Tjut Awaliyah Zuraiyah, Sufiatul Maryana, Asep Kohar, Automatic Door Access Model Based on Face Recognition using Convolutional Neural Network , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 22 No. 1 (2022)
- Susandri Susandri, Ahmad Zamsuri, Nurliana Nasution, Yoyon Efendi, Hiba Basim Alwan, The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 24 No. 2 (2025)
- Bambang Suprihatin, Yuli Andriani, Fauziah Nuraini Kurdi, Anita Desiani, Ibra Giovani Dwi Putra, Muhammad Akmal Shidqi, Lungs X-Ray Image Segmentation and Classification of Lung Disease using Convolutional Neural Network Architectures , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 1 (2023)
- Achmad Lukman, Wahju Tjahjo Saputro, Erni Seniwati, Improving Performance Convolutional Neural Networks Using Modified Pooling Function , MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer: Vol. 23 No. 2 (2024)
You may also start an advanced similarity search for this article.