Recognizing Pneumonia Infection in Chest X-Ray Using Deep Learning

  • Ni Wayan Sumartini Saraswati Institut Bisnis dan Teknologi Indonesia, Denpasar, Indonesia
  • I Wayan Dharma Suryawan Institut Bisnis dan Teknologi Indonesia, Denpasar, Indonesia
  • Ni Komang Tri Juniartini Institut Bisnis dan Teknologi Indonesia, Denpasar, Indonesia
  • I Dewa Made Krishna Muku Institut Bisnis dan Teknologi Indonesia, Denpasar, Indonesia
  • Poria Pirozmand Holmes Institute, Sydney, Australia
  • Weizhi Song University of Science and Technology, Hong Kong, China
Keywords: Chest X-Ray, Convolution Neural Network, Deep Learning, Image Classification, Pneumonia


One of the diseases that attacks the lungs is pneumonia. Pneumonia is inflammation and fluid in the lungs making it difficult to breathe. This disease is diagnosed using X-Ray. Against the darker background of the lungs, infected tissue shows denser areas, which causes them to appear as white spots called infiltrates. In the image processing approach, pneumonia-infected X-rays can be detected using machine learning as well as deep learning. The convolutional neural network model is able to recognize images well and focus on points that are invisible to the human eye. Previous research using a convolutional neural network model with 10 convolution layers and 6 convolution layers has not achieved optimal accuracy. The aim of this research is to develop a convolutional neural network with a simpler architecture, namely two convolution layers and three convolution layers to solve the same problem, as well as examining the combination of various hyperparameter sizes and regularization techniques. We need to know which convolutional neural network architecture is better. As a result, the convolutional neural network classification model can recognize chest x-rays infected with pneumonia very well. The best classification model obtained an average accuracy of 89.743% with a three-layer convolution architecture, batch size 32, L2 regularization 0.0001, and dropout 0.2. The precision reached 94.091%, recall 86.456%, f1-score 89.601%, specificity 85.491, and error rate 10.257%. Based on the results obtained, convolutional neural network models have the potential to diagnose pneumonia and other diseases.


Download data is not yet available.


[1] V. N. Sutriana, M. N. Sitaresmi, and A.Wahab, “Risk factors for childhood pneumonia: a case-control study in a high prevalence
area in Indonesia,” Clinical and Experimental Pediatrics, vol. 64, no. 11, p. 588, 2021.
[2] M. K. Prastika and E. Astutik, “The Relationship Between Malnutrition and Severe Pneumonia Among Toddlers in East Java,
Indonesia : An Ecological Study,” Journal of Public Health Research and Community Health Development, vol. 6, no. 2, pp.
93–101, mar 2023.
[3] F. Chandra, S. Arisgraha, R. Rulaningtyas, and M. A. Kusumawardani, “Classification of Pneumonia from Chest X-ray Images
Using Keras Module TensorFlow,” Indonesian Applied Physics Letters, vol. 4, no. 1, pp. 38–44, aug 2023.
[4] I. G. A. A. D. Indradewi, N. W. S. Saraswati, and N. W. Wardani, “COVID-19 Chest X-Ray Detection Performance Through
Variations of Wavelets Basis Function,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21,
no. 1, pp. 31–42, nov 2021.
[5] R. a. Rizal, I. S. Girsang, and S. A. Prasetiyo, “Klasifikasi Wajah Menggunakan Support Vector Machine (SVM),” REMIK:
Riset dan E-Jurnal Manajemen Informatika Komputer, vol. 3, no. 2, pp. 1–4, mar 2019.
[6] N. W. S. Saraswati, N. W. Wardani, and I. G. A. A. D. Indradewi, “Detection of Covid Chest X-Ray using Wavelet and Support
Vector Machines,” International Journal of Engineering and Emerging Technology, vol. 5, no. 2, pp. 116–121, dec 2020.
[7] R. Sujatha, J. M. Chatterjee, N. Z. Jhanjhi, and S. N. Brohi, “Performance of deep learning vs machine learning in plant leaf
disease detection,” Microprocessors and Microsystems, vol. 80, p. 103615, feb 2021.
[8] M. F. Naufal, “Analisis Perbandingan Algoritma SVM, KNN, dan CNN untuk Klasifikasi Citra Cuaca,” Jurnal Teknologi
Informasi dan Ilmu Komputer, vol. 8, no. 2, pp. 311–318, mar 2021.
[9] A. Peryanto, A. Yudhana, and R. Umar, “Convolutional Neural Network and Support Vector Machine in Classification of Flower
Images,” Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika, vol. 8, no. 1, pp. 1–7, mar 2022.
[10] L. Zhou, C. Zhang, F. Liu, Z. Qiu, and Y. He, “Application of Deep Learning in Food: A Review,” Comprehensive Reviews in
Food Science and Food Safety, vol. 18, no. 6, pp. 1793–1811, nov 2019.
[11] T. A. Zuraiyah, S. Maryana, and A. Kohar, “Automatic Door Access Model Based on Face Recognition using Convolutional
Neural Network,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 22, no. 1, pp. 241–252, nov
[12] R. A. Ramadhani, B.W. Pangestu, and R. Purbaningtyas, “Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network
dengan Arsitektur Efficientnet-B3,” JUST IT : Jurnal Sistem Informasi, Teknologi Informasi dan Komputer, vol. 12, no. 3, pp.
55–59, aug 2022.
[13] N. Yudistira, A. W. Widodo, B. Rahayudi, and P. Korespondensi, “Deteksi Covid-19 pada Citra Sinar-X Dada Menggunakan
Deep Learning yang Efisien,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 6, pp. 1289–1296, dec 2020.
[14] A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross
Validation,” Journal of Applied Informatics and Computing, vol. 4, no. 1, pp. 45–51, may 2020.
[15] I. S. Walia, M. Srivastava, D. Kumar, M. Rani, P. Muthreja, and G. Mohadikar, “Pneumonia Detection using Depth-Wise
Convolutional Neural Network (DW-CNN),” EAI Endorsed Transactions on Pervasive Health and Technology, vol. ”6”, no. 23,
pp. 1–10, sep 2020.
[16] N. Falah, “Rontgen Toraks Normal Tidak Dapat Menyingkirkan COVID-19.”
[17] J. P. Cohen, P. Morrison, L. Dao, K. Roth, T. Q. Duong, and M. Ghassemi, “COVID-19 Image Data Collection: Prospective
Predictions Are the Future,” pp. 1–38, 2020.
[18] V. Shanmukh, “Image Classification Using Machine Learning-Support Vector Machine(SVM),” mar 2021.
[19] H. Darmanto, “Pengenalan Spesies Ikan Berdasarkan Kontur Otolith Menggunakan Convolutional Neural Network,” Joined
Journal (Journal of Informatics Education), vol. 2, no. 1, pp. 41–59, jul 2019.
[20] A. R. Syulistyo, D. S. Hormansyah, and P. Y. Saputra, “SIBI (Sistem Isyarat Bahasa Indonesia) Translation using Convolutional
Neural Network (CNN),” IOP Conference Series: Materials Science and Engineering, vol. 732, no. 1, p. 012082, jan 2020.
[21] M. R. R. Allaam and A. T. Wibowo, “Klasifikasi Genus Tanaman Anggrek Menggunakan Metode Convolutional Neural Network
(CNN),” eProceedings of Engineering, vol. 8, no. 2, apr 2021.
[22] R. R. R. Arisandi, B. Warsito, and A. R. Hakim, “Aplikasi Na¨ıve Bayes Classifier (NBC) pada Klasifikasi Status Gizi Balita
Stunting dengan Pengujian K-Fold Cross Validation,” Jurnal Gaussian, vol. 11, no. 1, pp. 130–139, may 2022.
[23] I. A. Usmani, M. T. Qadri, R. Zia, F. S. Alrayes, O. Saidani, and K. Dashtipour, “Interactive Effect of Learning Rate and Batch
Size to Implement Transfer Learning for Brain Tumor Classification,” Electronics 2023, Vol. 12, Page 964, vol. 12, no. 4, p.
964, feb 2023.
How to Cite
Saraswati, N. W., Suryawan, I. W., Juniartini, N. K., Muku, I. D. M., Pirozmand, P., & Song, W. (2023). Recognizing Pneumonia Infection in Chest X-Ray Using Deep Learning. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 23(1), 17-28.