Detecting Vehicle Numbers Using Google Lens-Based ESP32CAM to Read Number Characters

  • Tukino Paryono Universitas Buana Perjuangan, Karawang, Indonesia
  • Ahmad Fauzi Universitas Buana Perjuangan, Karawang, Indonesia
  • Rizki Aulia Nanda Teknik Mesin, Fakultas Teknik, Universitas Buana Perjuangan Karawang
  • Saepul Aripiyanto Fakultas Teknik Informatika UIN Jakarta, Jakarta
  • Muhammad Khaerudin Teknik Informatika, Universitas Bhayangkara Jakarta Raya, Jakarta
Keywords: ESP32 CAM, Google Lens, Internet of Things, Vehicle Number Detector

Abstract

plates continues to increase. This research aimed to detect vehicle license plates using ESP32CAM and utilize photo text reading using Google Lens, which can be used online to retrieve numeric characters. The method approach was to connect Wifi connectivity to the ESP32CAM, which had been programmed to detect vehicle plates. Vehicle plates that have been detected and recognized were inputted into Google Lens to capture the resulting text from the ESP32CAM camera recording. The results of this study were that for 70 seconds, ten plate samples were obtained, which were 100% perfect in reading license plates on Google Lens, namely six plates and two plates read 90%, one plate read 60%, and one plate read 0%. The research conclusions obtained were ten samples, six samples with perfect readings, and one error sample because of the white plate color. Thus, the main objective was to obtain the results of the vehicle plate detection and retrieve the text from the recording results

Downloads

Download data is not yet available.

References

[1] N. Hanum Harani, C. Prianto, and M. Hasanah, “Deteksi Objek dan Pengenalan Karakter Plat Nomor Kendaraan Indonesia
Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Python,” Jurnal Teknik Informatika, vol. 11, no. 3, pp.47–53, 2019.
[2] Y. O. L. Rema, “Deteksi Plat Nomor Kendaraan Bermotor dengan Segmentasi Gambar,” Jurnal Saintek Lahan Kering, vol. 2,
no. 1, pp. 20–23, jun 2019.
[3] R. K. Varma P, S. Ganta, H. K. B, and P. Svsrk, “A Novel Method for Indian Vehicle Registration Number Plate Detection and
Recognition Using Image Processing Techniques,” Procedia Computer Science, vol. 167, no. 2019, pp. 2623–2633, 2020.
[4] Y. Rahmawati, I. U. V. Simanjuntak, and R. B. Simorangkir, “Rancang Bangun Purwarupa Sistem Peringatan Pengendara
Pelanggar Zebra Cross Berbasis Mikrokontroller ESP-32 CAM,” Jambura Journal of Electrical and Electronics Engineering,
vol. 4, no. 2, pp. 189–195, jul 2022.
[5] M. V*, V. M. Vinod, and M. M, “Face Recognition Based Attendance System,” International Journal of Innovative Technology
and Exploring Engineering, vol. 8, no. 12, pp. 520–525, oct 2019.
[6] I. F. Ashari, M. D. Satria, and M. Idris, “Parking System Optimization Based on IoT using Face and Vehicle Plat Recognition via
Amazon Web Service and ESP-32 CAM (Case Study: Institut Teknologi Sumatera),” Computer Engineering and Applications,
vol. 11, no. 2, pp. 137–153, 2022.
[7] R. Hassan, F. Qamar, M. K. Hasan, A. Hafizah, M. Aman, and A. S. Ahmed, “Internet of Things and Its Applications: A
Comprehensive Survey Rosilah,” Symmetry, vol. 12, no. 1647, pp. 1–29, 2020.
[8] M. C. T. M. Fahri Novaldi, Iqbal Amrulloh, I Wayan Wiprayoga Wisesa, “Pendeteksian Pelanggaran Pada penyebrangan Jalan
Menggunakan Single-Shot Detector Pada ESP32,” Jurnal Teknologi Informasi Komunikasi, vol. 9, no. 2, pp. 6–10, 2023.
[9] N. Omar, A. Sengur, and S. G. S. Al-Ali, “Cascaded Deep Learning-Based Efficient Approach for License Plate Detection and
Recognition,” Expert Systems with Applications, vol. 149, p. 113280, jul 2020.
[10] N. Wakhidah, “Deteksi Plat Nomor Kendaraan Bermotor Berdasarkan Area pada Image Segmentation (Licence Vehicles Detection
With Area Based on Image Segmentation),” Journal Transformatika, vol. 9, no. 2, pp. 55–63, 2012.
[11] M. M. Abdellatif, N. H. Elshabasy, A. E. Elashmawy, and M. AbdelRaheem, “A Low Cost IoT-Based Arabic License Plate
Recognition Model for Smart Parking Systems,” Ain Shams Engineering Journal, vol. 14, no. 6, p. 102178, jun 2023.
[12] W. Wickramanayake, P. Kumararathhe, U. Jayashan, and M. Maduranga, “ParkMate: An Image Processing Based Automated
Car Parking System,” in 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). IEEE,
mar 2022, pp. 1–5.
[13] Z. I. Bilyk, Y. B. Shapovalov, V. B. Shapovalov, A. P. Megalinska, F. Andruszkiewicz, and A. Dołha´nczuk-´ Sr´odka, “Assessment
of Mobile Phone Applications Feasibility on Plant Recognition: Comparison with Google Lens AR-app,” CEUR Workshop
Proceedings, vol. 2731, no. January, pp. 61–78, 2020.
[14] M. J. A. Baig, M. T. Iqbal, M. Jamil, and J. Khan, “Design and Implementation of an Open-Source Iot and Blockchain-Based
Peer-To-Peer Energy Trading Platform Using ESP32-S2, Node-Red and, MQTT protocol,” Energy Reports, vol. 7, pp. 5733–
5746, nov 2021.
[15] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, and W. Gao, “Pre-Trained Image Processing
Transformer,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, jun 2021, pp.
12 294–12 305.
[16] E. Winarno, I. Husni Al Amin, H. Februariyanti, P. W. Adi, W. Hadikurniawati, and M. T. Anwar, “Attendance System Based
on Face Recognition System Using CNN-PCA Method and Real-time Camera,” in 2019 International Seminar on Research of
Information Technology and Intelligent Systems (ISRITI). IEEE, dec 2019, pp. 301–304.
[17] M. F. Rozi, E. S. Pramukantoro, and K. Amron, “Analisis Performansi dan Skalabilitas pada Event-Based IoT Middleware,”
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 7, pp. 593–601, 2017.
[18] J. Xiong, L. Chen, M. Z. A. Bhuiyan, C. Cao, M. Wang, E. Luo, and X. Liu, “A Secure Data Deletion Scheme for IoT Devices
Through Key Derivation Encryption and Data Analysis,” Future Generation Computer Systems, vol. 111, pp. 741–753, oct
2020.
[19] R. A. Nanda, A. Arhami, and R. Kurniawan, “Perancangan dan Pengujian Model Mobil Robot Penanam Bibit Kangkung,” Rona
Teknik Pertanian, vol. 13, no. 2, pp. 14–28, oct 2020.
[20] K. Xing, X. Liu, Z. Liu, J. Mayer, and S. Achiche, “Low-Cost Precision Monitoring System of Machine Tools for SMEs,”
Procedia CIRP, vol. 96, pp. 347–352, 2021.
[21] M. L. Paramita, K. Orphanou, E. Christoforou, J. Otterbacher, and F. Hopfgartner, “Do You See What I See? Images of the
COVID-19 Pandemic Through the Lens of Google,” Information Processing & Management, vol. 58, no. 5, p. 102654, sep
2021.
Published
2023-07-03
How to Cite
Paryono, T., Fauzi, A., Nanda, R., Aripiyanto, S., & Khaerudin, M. (2023). Detecting Vehicle Numbers Using Google Lens-Based ESP32CAM to Read Number Characters. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 22(3), 469-480. https://doi.org/https://doi.org/10.30812/matrik.v22i3.2818
Section
Articles